

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 1 of 16

Ashling Product Brief APB200

Advanced Debugging using the Ashling MPC5500 tools

1. Contents
1. Contents 1
2. Introduction 1
3. Break on Data Access 1
4. Tracing Accesses to a Variable 3

4.1 Cycle accurate mode Data Tracing 5
5. Tracing Code Execution between two Events 7
6. Tracing Code Execution up to an Event 10
7. Tracing Code Execution after an Event 12
8. Tracing Code Execution up to Program Halt 14
9. Vitra Trace Diagnostics 15
10. For more information… 16

2. Introduction
This document provides some examples of advanced debugging features available when using the Ashling
MPC5500 Tools. Examples are based on PathFinder for MPC5500 v1.1.1 using an Ashling Vitra for MPC5500
Emulator and MPC5566 based target board. It is assumed that you have installed/configured PathFinder
appropriately for use with the target board. Advanced debugging features described include:

 How to break (halt) when a particular variable in your program is accessed

 How to trace (capture) all write accesses to a particular variable

 How to trace code execution between two events, after an event, up to an event or a program halt

3. Break on Data Access
This example shows how to break (halt execution) when a particular variable in your program is accessed. We
will use the example program

C:\PFMPC\Examples\Controlr\MPC5534\BIN\CONTROLR_RAM.CSO

Load the program via PathFinder’s File|Load menu

To halt when ever the variable iLastRandValue is accessed then setup an e200 Data Watchpoint at this

variable as follows:

1. Open the Breakpoint Configuration dialog via the Run menu

2. Set the Address field of e200 Data Watchpoints Watchpoint 0 to iLastRandValue (use the Browse

button to symbolically pick iLastRandValue)

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 2 of 16

Figure 1. e200 Watchpoints Dialog

3. In the Set Hardware Breakpoints tab check e200 Data Watchpoint 0 Load Debug Event Set to halt

when iLastRandValue is read and e200 Data Watchpoint 0 Store Debug Event Set when

iLastRandValue is written to.

Figure 2. Set Hardware Breakpoints Dialog

4. Click OK and run the program from reset (Run|Go from Reset). The program will halt when
iLastRandValue is either read or written to depending on your selection. Notice how the cause of

break is shown in PathFinder’s Status bar (we halted in the example below when iLastRandValue

was read).

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 3 of 16

Figure 3. PathFinder Source Window

4. Tracing Accesses to a Variable
This example shows how to trace (capture) all write accesses to specified variable in your program. We will use
the example program

C:\PFMPC\Examples\Controlr\MPC5534\BIN\CONTROLR_RAM.CSO

Load the program via PathFinder’s File|Load menu

To trace write accesses to the variable iLastRandValue then setup a Trigger using Trigger|Trigger

Configuration as follows:

1. The Trace Options tab can be left at default settings i.e.:

Figure 4. Trace Options Dialog

Depending on your Trace requirements you may want to adjust the Vitra Trace Buffer Size.

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 4 of 16

2. The e200 Code tab can be left at default settings i.e.:

Figure 5. e200 Code Dialog

3. The e200 Data tab should be set as shown below.

 Set Start Emitting Data Trace to On Program Execution and Stop Emitting Data Trace to On

Program Halt.

 Set Data Trace Region 0|Trace Type to Write Trace and the Start Address and End Address to

iLastRandValue (use the Browse button to symbolically pick iLastRandValue)

Figure 6. e200 Data Dialog

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 5 of 16

4. Click Activate, enable Trace (Trace|Enable Trace…) and run the program from reset (Run|Go from

Reset). Halt the program after a few seconds and open the Data Trace window. All write accesses to
iLastRandValue will be shown as below:

Figure 7. Data Trace Window

4.1 Cycle accurate mode Data Tracing
PathFinder v1.1.1 supports Cycle accurate mode data tracing. In this mode, every Nexus data-access trace

packet emitted from the chip is given a unique time-stamp. When Cycle accurate mode is off, then multiple

Nexus packets will be assigned the same time-stamp. Cycle accurate mode therefore gives you more accurate
time-stamps at the expense of less trace capacity.

Figure 8. Enabling Cycle accurate mode

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 6 of 16

The follow screen-shots illustrate tracing with Cycle accurate mode on and off. These screen-shots use the
example program C:\PFMPC\Examples\1ms Timer\MPC5566\bin\RAM.CSO which uses a 1mS interrupt

handler to increments a variable. When Cycle accurate mode is on we can see the variable writes are
accurately measured at 1mS intervals (+/-0.0005 mS)

Figure 9. Data-tracing with Cycle accurate mode on

When running this program, ensure that Critical Interrupt Hardware Breakpoints are off as per the below screen-
shot (this will prevent the programming halting at each interrupt).

Figure 10. Setting Critical Interrupts off

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 7 of 16

5. Tracing Code Execution between two Events
In this example we demonstrate using Instruction Watchpoints to trace all e200 code execution between two
specific events (the entry and exit of a particular function). We will use the example program:

C:\PFMPC\Examples\Controlr\MPC5534\BIN\CONTROLR_RAM.CSO

Load the program via PathFinder’s File|Load menu

To capture all code execution of the function WriteToDevice then setup a Trigger using Trigger|Trigger

Configuration as follows:

1. The Trace Options tab can be left at default settings i.e.:

Figure 11. Trace Options Dialog

2. The e200 Code tab should be set to Start Emitting Code Trace on e200 Inst Watchpoint 0 and Stop

Emitting Code Trace on e200 Inst Watchpoint 1 as shown below:

Figure 12. e200 Code Dialog

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 8 of 16

3. The e200 Data, eTPU Code, eTPU Data, eDMA Data and eTPU Watchpoints should be left at their

default values and the e200 Watchpoints tab should be set as shown below.

 Check Allow User Control of e200 Watchpoint Resources

 Set Watchpoint 0 to the entry of WriteToDevice

 Set Watchpoint 1 to the exit of WriteToDevice

 This can be done symbolically using the Browse… dialog (invoke via the Browse… button and

make sure that Display Line Number Symbols is checked)

Figure 13. e200 Watchpoints Dialog (setting Watchpoint 1)

4. Click Activate, enable Trace (Trace|Enable Trace…) and run the program from reset (Run|Go from

Reset). Halt the program after a few seconds and open the Code Trace window. All calls to
WriteToDevice will be shown as below:

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 9 of 16

Figure 14. Code Trace Window

Instruction Watchpoint 0 (i.e. our “Start Trigger”) is shown in green (e.g. Frame 0 and 5 in the above screen-shot)
and Instruction Watchpoint 1 (i.e. our “Stop Trigger”) is shown in red (e.g. Frame 4 in the above screen-shot).

The Time column shows the time stamp of each captured frame. PathFinder only knows the absolute time for
discontinuous instructions (e.g. bl, b, blr) or instructions at which a Watchpoint occurs, hence, the time for other
frames is shown relative (< or >) to these frames. To quickly measure the time difference between frames,

double-click on the Time column in the ‘reference’ frame. For example, in the below screen-shot we have set

frame 5 as the reference frame by double-clicking in the Time column of frame 5. All other frame times are now
shown relative to frame 5.

Figure 15. Triggering between Two Events. Relative Time Display.

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 10 of 16

6. Tracing Code Execution up to an Event
In this example we demonstrate using Instruction Watchpoints to trace all e200 code execution up to a specific
event (the entry to a particular function). We will use the example program:

C:\PFMPC\Examples\Controlr\MPC5534\BIN\CONTROLR_RAM.CSO

Load the program via PathFinder’s File|Load menu

To capture all code execution up to the call to the function WriteToDevice then setup a Trigger using

Trigger|Trigger Configuration as follows:

1. The Trace Options tab should be set as below i.e. uncheck Stop Trace When Buffer Full and set the

Vitra Trace Buffer Size to the maximum supported size

Figure 16. Trace Options Dialog

5. The e200 Code tab should be set to Start Emitting Code Trace on e200 Inst Watchpoint 0 and Stop

Emitting Code Trace on e200 Inst Watchpoint 1 as shown below:

Figure 17. e200 Code Dialog

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 11 of 16

6. The e200 Data, eTPU Code, eTPU Data, eDMA Data and eTPU Watchpoints should be left at their

default values and the e200 Watchpoints tab should be set as shown below.

 Check Allow User Control of e200 Watchpoint Resources

 Set Watchpoint 0 to the entry of main as follows (i.e. start tracing as soon as program begins

executing)

Figure 18. e200 Watchpoints Dialog (setting Watchpoint 0)

 Set Watchpoint 1 to the entry of WriteToDevice (i.e. the point we want tracing to stop)

Figure 19. e200 Watchpoints Dialog (setting Watchpoint 1)

2. Click Activate, enable Trace (Trace|Enable Trace…) and run the program from reset (Run|Go from

Reset). Halt the program after a few seconds and open the Code Trace window. All code execution up to
WriteToDevice will be shown as below:

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 12 of 16

Figure 20. Code Trace Window

7. Tracing Code Execution after an Event
In this example we demonstrate using Instruction Watchpoints to trace all e200 code execution after a specific
event (the entry of a particular function) until the trace buffer is full. We will use the example program:

C:\PFMPC\Examples\Controlr\MPC5534\BIN\CONTROLR_RAM.CSO

Load the program via PathFinder’s File|Load menu

To capture all code execution after the call to the function WriteToDevice then setup a Trigger using

Trigger|Trigger Configuration as follows:

3. The Trace Options tab can be left at default settings i.e.:

Figure 21. Trace Options Dialog

Note that the Stop Tracing When Buffer Full ensures we halt tracing once we have a full trace buffer

(buffer size can be adjusted using Vitra Trace Buffer Size).

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 13 of 16

4. The e200 Code tab should be set to Start Emitting Code Trace on e200 Inst Watchpoint 0 and Stop

Emitting Code Trace On Program Halt as shown below:

Figure 22. e200 Code Dialog

5. The e200 Data, eTPU Code, eTPU Data, eDMA Data and eTPU Watchpoints should be left at their

default values and the e200 Watchpoints tab should be set as shown below.

 Check Allow User Control of e200 Watchpoint Resources

 Set Watchpoint 0 to the entry of WriteToDevice i.e. the point at which we want tracing to start

 This can be done symbolically using the Browse… dialog (invoke via the Browse… button and

make sure that Display Line Number Symbols is checked)

Figure 23. e200 Watchpoints Dialog (setting Watchpoint 0)

6. Click Activate, enable Trace (Trace|Enable Trace…) and run the program from reset (Run|Go from

Reset). Halt the program after a few seconds and open the Code Trace window. All code execution from
WriteToDevice will be shown as below:

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 14 of 16

Figure 24. Code Trace Window

8. Tracing Code Execution up to Program Halt
This example shows how to trace all code execution up to program halt (e.g. your program hits a breakpoint or
you halt it via PathFinder)

1. The Trace Options tab should be set as below i.e. uncheck Stop Trace When Buffer Full and set the

Vitra Trace Buffer Size to the maximum supported size

2. The e200 Code tab should be set to Start Emitting Code Trace On Program Execution and Stop

Emitting Code Trace on Program Halt as shown below:

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 15 of 16

Figure 25. Tracing up to a program halt

This configuration will capture trace continuously until your program halts (note that no Watchpoints are needed
in this configuration).

9. Vitra Trace Diagnostics
This section shows how to verify that your Vitra is correctly capturing trace data. The test will ensure that your
Vitra and Target Probe Assembly (cable between your Vitra and your target system) are functional. This test
requires PathFinder v1.1.1 or later. The test is included with your PathFinder software and involves running a
group-file (script-file). By default, the group-file is stored in:

PFMPC\Ashling Trace Probe Test\MPC5566\mpc5566_trace_probe_test.grp

This can be run via PathFinder’s Run|Run A Group-file menu as follows:

Browse to the group-file and select Open. The test will run and PathFinder will display the results in the

Command window as follows:

APB200 - Advanced Debugging using the Ashling MPC5500 Tools

Page 16 of 16

If the tests fail, then:
1. Ensure Vitra is properly connected to your MPC5566 based target system and that the target system is

powered up.

2. Ensure you are using with an MPC5566 based target system (other devices will not work).

3. If the problems still persist then you may have a faulty Vitra or cable; contact Ashling support on
ashling.support@nestgroup.net

10. For more information…
You’ll find full details on all PathFinder operations and commands in the appropriate Ashling User manuals. To
keep your Ashling software up-to-date, check regularly for the latest software downloads at

www.ashling.com/support/mpc5500 by following the link to Download PathFinder-MPC5500.

www.ashling.com/support/mpc5500

Ashling Microsystems Ltd

National Technology Park

Limerick

Ireland

Phone: +353 61 334466

Fax: +353 61 334477

Email: support@ashling.com

Doc: APB200-MPC5500Trace.doc 13th Feb 2013

mailto:Ashling.support@nestgroup.net

