LZ ASHLING

- EMBEDDED TECHNOLOGY AND INNOVATION

Contents
1.
2.
2.1
2.2
3.
4.,

Ashling Product Brief APB211
v.1.0.6, 15%* January 2013

PathFinder-XD for MIPS™ Powered Devices

Introduction
Installation
Windows™ [nstallation

Linux Installation

Using PathFinder-XD with the QEMU simulator

Embedded Linux Debugging with PathFinder-XD and the QEMU Simulator
Preparing for debugging

4.1

4.2

4.3

4.1.1
4.1.2
4.1.3

Simulator

Building with debug symbols
Compiler optimisations
On-demand paging

Stop-mode Debugging

421

Sample Stop-mode Linux Debugging Session

4.2.1.1 Invoking PathFinder-XD and connecting to the QEMU simulator
4.2.1.2 Loading kernel symbol information to PathFinder-XD and executing
the kernel image

4.2.1.3 Debug a module from init module ()

4.2.1.4 Debugging a process from main ()

4.2.1.5 Debugging a running process

4.2.1.6 Library debugging

Run-mode Debugging

43.1

4.3.2

Preparing for Run-mode Debugging

4.3.1.1 Setting up networking between host and QEMU simulator

4.3.1.2 Modify QEMU invocation parameters

Copy and Paste Warning! Do not copy and paste the above into PathFinder-
XD; it will not work due to PDF issues. The above invocation line can be copied
and pasted from the README.TXT supplied with PathFinder-XD.

Sample Run-mode Linux Debugging Session

4.3.2.1 Debugging the Module and Process

4.3.2.2 Debugging multi-threaded applications

4.3.2.3 Debugging more than one application at the same time

Ashling Product Brief APB211
PathFinder-XD for MIPS™ Powered Devices
Page 1 of 35

23
23
24
31
35

1. Introduction

PathFinder-XD is a C/C++/Assembly debugger based on the Eclipse framework and supports debugging using
the QEMU software simulator (www.gemu.org) or the Ashling Opella-XD Debug Probe connected to MIPS™

powered target hardware.
E Debug - C:\Program Files\Ashling'PathFinder-XDforMIPS examples\LE\UnCached'src\main.c - PathFinder-XD for MIPS

Eile Edit Linux Target Run Window Help

= B G

%5 Debug 22 = L | i | @y ¥ = 0| 9 Breakpaints | [Memory | 314 Registers 82 |67 Expressio
[€] QEMU Simulator [PathFinder-XD Embedded Debugging] Mame Value
12 UnCached_LE.elf _ M General Registers
o Thread/Core [0] (Suspended : Breakpoint) mo e 00
= main(at main.c:18 0xa00005a0 10 0l
5 QEMUConsole - - -
; 4
g gdb
‘Tl main.c &3 = O || (9= variahles 52 |2 Disassembly
i Mame Type
Ent main(void) (= iError unsigned int
| unsigned int iErrer = NO_ERROR; 6d= cCommand char
char cCommand = NO_COMMAND; = (= =Data data_struct

data_struct sData;
ClearDisplay ();
while (TRUE} /* Repeatedly handle commands */

£

|

Figure 1. PathFinder-XD for MIPS™

PathFinder-XD supports both “bare-metal” (no target operating system) and Embedded Linux based debugging.
This application note introduces PathFinder-XD Simulator version and covers using PathFinder-XD with the
QEMU Simulator.

2. Installation

PathFinder-XD can be hosted under Windows™ or x86 based Linux and installation requires full administration
privileges.

Please note: If you have PathFinder-XD already installed then please uninstall it before proceeding.

2.1 Windows™ Installation
Run the SETUP.EXE program from the Windows directory on the supplied CD (or download) and follow the on-
screen instructions.

2.2 Linux Installation
Run the ./SETUP32 (32-bit Linux) or ./SETUP64 (64-bit Linux) program from the supplied CD (or download)
and follow the on-screen instructions. PathFinder-XD for MIPS is tested on the following Linux platforms:

e Fedora 13/Ubuntu 10.04 LTS 32-bit/64-bit versions

e Ubuntu 08.04 LTS 32-bit/64-bit (requires a specific version of PathFinder-XD)

Please note that the 64-bit Linux version of PathFinder-XD for MIPS requires the 32-bit library package ia32-
libs library, hence, make sure this is installed in your system. For example, to install on Ubuntu/Debian, issue
the following command:

> S$sudo apt-get install ia32-1libs

Ashling Product Brief APB211
Page 2 of 35

http://www.qemu.org/

3. Using PathFinder-XD with the QEMU simulator

In this section we will look at using PathFinder-XD with the QEMU simulator. Ashling provide a binary (executable)
version of the QEMU simulator built for the MIPS architecture installed and ready to run. To use QEMU with
PathFinder-XD complete the follow the following steps:

PF-
LA
PRtHEING era

D orMIPS]
1. Run PathFinder-XD ' Slaslkisels

2. PathFinder-XD will then load as follows:

PathFinder-XD for MIPS
v1.0.6

£Z ASHLING

THE DEVELOPMENT SYSTEMS COMPANY

Figure 2. PathFinder-XD for MIPS™ |oading
If this is your first-time running then you will be prompted to specify your Workspace (default directory for
projects etc). Accept the default which is located in PathFinder-XD’s installation directory.
3. In PathFinder-XD, create a New Target Configuration via the Target menu
PathFinder-xD for MIPS
Lirux Run Window Help
E@f Mew Target Configuraticn
Flash

Figure 3. Target Configuration

Ashling Product Brief APB211
Page 3 of 35

and select the Debug using Simulator (QEMU) option as shown below

Z? New Connection l o8 x

Select Remote System Type
Please select the system type of the remote system to connect. :H—:

System type:

type filter text

4 [= Ashling Debugging
@ Debug using Debug Probe
- Debug using Simulator (QEMU)

) -
@) < Back MNext = Finish

Figure 4. Selecting Remote System Type

4. Click Next and we can now configure our QEMU settings as shown below:

"€ QEMU Simulator configuration l = i&l
Simulator
QEMU configuration
QEMU executable use default
Initial target byte order Little Endian V]
Port(prefix -p if using older versions of QEMU) 1234
-M malta -5 B I
Other QEMU invecation parameters)
4 [
@:l MNext > [Finizh l [Cancel

Figure 5. QEMU Simulator Configuration
Settings include:

e QEMU executable: The actual binary file executed by PathFinder-XD when invoking QEMU.
Usually not changed

e Initial target byte order: Required endianness
Port: The TCP/IP port used by PathFinder-XD to communicate with QEMU. Usually not changed

Ashling Product Brief APB211
Page 4 of 35

6.

e QEMU Invocation parameters: Allows you to configure QEMU. For more details on QEMU
configuration, see the following links:
http://wiki.gemu.org/download/gemu-doc.html#sec_005finvocation
http://wiki.gemu.org/download/gemu-doc.html#MIPS-System-emulator

Click Finish when done.

PathFinder-XD will now create a new QEMU Simulator setting in it's Remote Systems Window as shown
below:

48 Remote Systems 3 @; & | o I

4 e QEMU Simulatori
=f= QEMU

Figure 6. Remote Systems Window

Right-click on QEMU and click Connect to invoke QEMU. Once invoked, the Remote Systems window
will update as follows:

8 Rermote Systems &3 @} & | -~ =8
4 g QEMU Simulator
4 | g QEMU
[#* QEMUSIm

Figure 7. Remote Systems Window after QEMU connection

We can now download a program to QEMU by right-clicking over QEMUSIm and selecting Download and
Launch

}Eﬁemote Systems 2 E@" &2 | | - <~ = 08
4 @ QEMU Simulator
4 g QEMU
@f QEMLISion
GoTo 3

£ Refresh

Rename... F2

Delete... Delete

@ Downloead And Launch..,
Feset »

Figure 8. Download and Launch

PathFinder-XD includes a suitable program (C:\Program Files\Ashling\PathFinder-
XDforMIPS\examples\LE\UnCached\Debug-LE\UnCached LE.elf) for running with QEMU.

Ashling Product Brief APB211
Page 5 of 35

http://wiki.qemu.org/download/qemu-doc.html#sec_005finvocation
http://wiki.qemu.org/download/qemu-doc.html#MIPS-System-emulator

"EZ QEMU Simulator

Modify attributes and launch

Mame: QEMU Simulator

Main] ﬁf&i Debugger| Ey Snurce‘

Download

ELF (binary) path Ct\Program Files\ Ashling\PathFinder-XDforMIPS examples\LE\UnCached' Debug-LE\ UnCached_LE.elf]
Load Opticns
@ Symbols only
@ Program and symbols
Load (program and symbols) and verify (program)

Use fast download (requires 512 bytes of RAM)

Rakd address

05 Awareness

[Enable 05 debugging | Linux

Browse...

[sepy |

Revert]

@ [Debug |

Close]

Figure 9. Specifying Target Program to Download

In the Debugger tab you can tell PathFinder-XD to stop at main () as shown below

Main | 35 Debuggerl By Source|

GDB cemmand file: .gdbinit

[main
Debugger Options
Main
GDE debugger C:\Program Files\Ashling'\ PathFinder-XDforMIPSWGNUDebuggermips-linux-gnu-gdb-gemu.exe

Browse...

Figure 10. Stopping at main ()

When finished, press Debug to load your program.

Ashling Product Brief APB211
Page 6 of 35

7. PathFinder-XD will now download the program to QEMU and update it's Windows as follows allowing you to

start your Debug session:
"ZZ Debug - C:\Program Files\Ashling\PathFinder-XDforMIPS\examples\LE\UnCached\src\startup.5 - PathFinder-XD for MIPS
File Edit Linux Target Run Window Help

¥ O
35 Debug 32 i | e ‘ i | @2 ¥ = B ||% Breakpoints 2 | [J Memory | 4 Registers | & Expressions
QEMU Simulator [PathFinder-XD Embedded Debugging]
[UnCached LE.elf
4 Thread/Core [0] (Suspended : User Request)
= _start() at startup.5:25 0xa0000818
» QEMUConscle
»l gdb
]
startup.§ 2 = B ||td= Variables 1 | Z= Disassembly
f o o Name Type
Routine: _start Lz
Initialises core
LEAF(_start)
// 1. Initialise CPU registers
» or v@,zero, zero
or vl,zero, zero
or a@,zero, zero
or al,zero, zero
or a2,zero, Iero
or a3,zero, zero
or t@,zero, zero
or tl1,zero, zero
or t2,zero, zero
or t3,zero, zero
or t4,zera, zero
or t5,zero, zero
or t6,zero, zero
or t7,zero, zero
or 58,zero, zero
or s1,zero, zero
ar =?.7era. Tern &2
1 » «
44 Remote Systems &3 B 2 | 5 ¥ = 0| B Console 2 ‘ ® @El "El‘ = B - 5~ = O| & File Browser 52
4 g QEMU Simulator QEMU Simulator [PathFinder-XD Embedded Debugging] gdb -
a ¢ QEMU The target is assumed to be little endian - type filter text
[QEMUSIm

%5 UnCached_LE.elf

=>E‘ r.%a

=i =]
&} (B9 Debug |

nEg- 0

Value

Figure 11. PathFinder-XD after program download

8. You can now control execution (start, stop, step etc.) using the Debug bar:

% Debug i3 O (] @ | 3 @ i & | & ¥ = 8
LI

- Stop/Halt

3D R

= Step Into, Over and Return (Out)

Terminate (this button actually terminates the debug session meaning we have to Download and

Launch again)
Figure 12. Execution Control

When setting/toggling breakpoints in the Source and Disassembly Windows, make sure the mouse pointer is

hovering over the left-most column (known as the ruler) of the Window as shown below:

startup.S & main.c £3

int main{woid)
unsigned int iError =

char cCommand
data_struct sData;

NO_ERROR;
NO_COMMAND 3

ClearDisplay ();

Figure 12. Setting a breakpoint

Ashling Product Brief APB211
Page 7 of 35

9. To watch a variable or expression, select it using the mouse and Add Watch Expression via the right-mouse
button menu as show below:

strepy (R se

Revert File
h Save Ctrl+5
vold ClearDisplay Show In Alt+Shift+ W »
{
int ilndex; Source AltsShift+S »
‘ Surround With Alt=Shift-Z »
temote Systems &3 l_ Refactor »
& QEMU Simulatar Declarati R
@ QEMU eclarations
@ QEMUSim References 2
=] Runte Line Ctrl+R
3. Move To Line
S Resume At Line
Y Add Watch Expression...
3 PC at CurrentLine
Preferences...
Figure 13. Adding a Watch Expression
|°o Breakpaints| i Memorj,r“%? Registers | 8" Expressions E@\ -1>E| o i &| | ",_,’5'| & 7 =
Expression Type Value Name : szDisplay
—_— Details:"Writing to A completed.\\@@a@", ' '
[(= szDisplay char [50] 0xa0004050 Default:@xapRELoSE

Figure 14. Expression window showing watched expression

You can also quickly watch an expression by hovering the mouse pointer over it as shown below:
strepy (m szlocalstring);

} Expression Type Yalue =
4 [cpllicplay char [50] (020004050 L4
void ClearDi 69- szDisplay[0] char 87 'W'
R B i i uey :
for (1Irl'| < T |
sz} Name : szDisplay -

L
J
4

" [

Details:"Writing to A completed.’\@@8", '
Default:Bxakeaiase

Jﬁ Bermote Systerms Decimal: 2684371824
ystems Hex : Bxal@ee4ase

& QEMU Simu Binary:l2legoecoaeeeneeeleceneeeleleaas 3
& QEmu [b
[QEMUSIm

<repeats 25 times> ‘_

Figure 15. Quick watch via mouse hover

Ashling Product Brief APB211
Page 8 of 35

10. PathFinder-XD supports a Console Windows (or Views) which can be opened from the Window menu:
File Edit Linux Target Run | Window | Help

= o8 @J MNew Window
MNew Editor L =
3% Debug 12 O e~ = 0| ® Breakpoints| [Memary |3
(€] QEMU Simulatar [PathFine Open Perspective 4 Eifrirsecin
178 UnCached_LE.elf Show View ¥ | ©g Breakpoints Alt+Shift+Q, B
1 Thread/Core [0] (Su Save Perspective A 'rg Cache
= DisplayMeszage Ve FEISPRCEvE As... : :
= main() at main. Reset Perspective.. B Consele ST
) QEMUCensole Close Perspective M | CPUInfo
pd gdb Close All Perspectives % Debug
=2 Disassembly
SR P& Expressions
&1 Refresh Debug Views { File Browser
e display.c i3 Preferences B Linux Modules
strepy (szlecalString, "Reading Trom B)5 ﬂ Linux Process
else if (cCommand == WRITE_DEWICE_A) =
strepy (szlecalString, "Writing toc & "); ’
else if (cCommand == WRITE_DEVICE_B) 0 Memory Browser
strepy (szlecalString, "Writing to B "); B Peripheral Registers
* complete the error/success part. 3181 Registers
if (iError == UNKNOWN_COMMAND) [e
strepy (szlecalString, "ERROR: Unknown comm !)
else if (iError == NO_ERROR) 0 Seratchpad RAM
strcat (szlecalString, " completed.”™); é:_ﬂ TLE
else . i) .
streat (szlocalString, "failed.™); = Variables Alt+ Shift+Q, V
Other... Alt+5Shift+Q, Q

Console.

/* Display the message */
strcpy (m, szlecalString);

Figure 16. PathFinder-XD Views

Allows you to enter debug commands and view their output. The GNU GDB syntax is fully
supported. See here for details: http://sourceware.org/gdb/current/onlinedocs/gdb/index.html

or for a

handy quick-reference card see here: http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

El Conscle 2

(el
==

| Gk | LE |[E]&)

QEMU Simulator [PathFinder-XD Embedded Debugging] gdb

info reg
Zero at v vl ae
R aeaE8RE8 9AEERE01 208004856 GEEREEEE aBBB1BGS
te t1 t2 t3 t4
R& 3e3pEREE Blelelrl PERARAREE 2e646574 PERBREEE
58 51 52 53 =4
Rle @eERE22E PE2ERER2E REAREAREE AREREERE PEREREEE
t8 to k@ k1 Ep
RZ24 ZeeeR588 9eld9fc3t GEEEEEEE AEEEEREE aPER4116
ar 1o hi bad cause

eedaffoe

gEeooees GRoooEEE DoooEREE BEoRE4EE

4 B-ri-=0

al afs
aEBpad223 BEREREE:
t5 T
GERERE1LE BEBRE3E =
55 =
GEREREEE BEREEEE
sp Si—
aBRE42ea afEad2@
pc

ap@ea3fc

< |

T

[3

Figure 17. PathFinder-XD Console showing the output of the info reg command

For example, to dump 16 words of memory in hex format from 0xA0004200 enter the examine command

as follows:
x /lewx 0xA0004200
0xa0004200: 0x00000000 0x00000000 0x74697257
0xa0004210: 0x41206f74 0x6f632020 0x656c706d
0xa0004220: 0x00000000 0xal004228 0x00000004
0xa0004230: 0x00000000 0Ox00000000 0Ox0000000O0

0x20676e69
0x2e646574
0xa0004238
0x00000000

Console commands can also be stored in a text file (GDB script file) and executed from PathFinder-XD’s

Run menu.

Ashling Product Brief APB211

Page 9 of 35

http://sourceware.org/gdb/current/onlinedocs/gdb/index.html
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

4. Embedded Linux Debugging with PathFinder-XD and the QEMU
Simulator

PathFinder-XD supports Embedded Linux Debugging for kernels based on v2.6 or later. Support works in two
modes:
e Stop-mode: In stop-mode debugging, the whole system is halted (e.g. kernel and applications) whenever
a breakpoint is taken.
¢ Run-mode: Run-mode debugging requires an application (GDB server) running on the QEMU simulator.
In run-mode, the kernel continues to run when an application breakpoint is taken.

Stop-mode debugging is useful for bringing up the kernel as it allows debugging from reset. Stop-mode can also
be used for process debugging, however, the kernel/interrupts etc. will not continue to run when halted (unlike
run-mode). When stop-mode debugging a process, PathFinder-XD automatically scans the kernel MMU mapping
for that process and sets up the MIPS core TLB to allow debug access to the process’s memory area.

Run-mode debugging requires that the kernel is up and running and allows non-intrusive debug of a process (i.e.
the kernel will continue to run even when a process is halted). Run-mode also supports thread-aware breakpoints
and simultaneous debug of multiple processes.

This section demonstrates Linux Kernel Debugging using PathFinder-XD and the QEMU simulator running
v2.6.32 of the Linux Kernel on a Windows host machine. A suitable, pre-built version of the v2.6.32 Linux Kernel
and root file-system is also available for download from Ashling
(http://www.ashling.com/support/MIPS/QEMU LINUX/MIPS QEMU LINUX v2.6.32.7IP); this should
be installed by unzipping on to your local hard-disk (ensure you preserve the directory structure as present in the
ZIP file).

Ashling recommend a high-spec PC (e.g. dual-core with 4GB memory) for use with this example given the
processing-power required to run Linux on the QEMU simulator.

4.1 Preparing for debugging
This section is only necessary if you are building/using your own Kernel; the version supplied by Ashling includes
all of the following requirements.

4.1.1 Building with debug symbols
Your kernel, modules, processes, libraries, drivers etc. must be built with debug symbols as PathFinder-XD needs
to access global structures and variables etc. to support Linux debugging. Please note that debug symbols for
Linux kernel (vmlinux) are required to debug user-mode applications in stop-mode (to allow PathFinder-XD to
handle memory mapping which requires kernel symbols). Kernel symbols are not required for run-mode
debugging.

e For the kernel, run make menuconfig, select Kernel hacking, enable Kernel debugging and Compile the

kernel with debug and run make to rebuild the kernel with debug symbols.

e For non-kernel items, add the compiler gcc switch -g (which will generate debug symbols) to your
makefile and rebuild.

4.1.2 Compiler optimisations

Compiler optimisations should not be used as they can cause misalignment between the generated symbolic
information and the actual generated machine code thus causing problems with debugging. In particular, the flag
--ffunction-sections should not be used as it will create .text sections for every function causing problems
for PathFinder-XD. See here for more details: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html. To
remove these optimizations, change your makefile and rebuild e.g.:

Change arch/mips/Makefile

from:

cflags-y := --ffunction-sections (Line number 51 in Linux kernel 2.6.27)
to:

#cflags-y := --ffunction-sections

Ashling Product Brief APB211
Page 10 of 35

http://www.ashling.com/support/MIPS/QEMU_LINUX/MIPS_QEMU_LINUX_v2.6.32.ZIP
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

4.1.3 On-demand paging

Linux uses “on-demand paging” meaning that a process’s (and its dependant libraries) code, data and stack are
not actually paged into memory until they are first used. This can cause problems when you wish to “stop-mode”
debug a process from its initialisation as it may not yet be present in memory. For example, you cannot set
software breakpoints which require patching of the software breakpoint instruction into the appropriate process’s
memory location until the actual associated process code page is in memory. Depending on the size of your
target’s memory space and your memory management unit (MMU configuration), you may or may not have this
issue. If you do then Ashling provide a kernel patch that will force all of a process’s code, data and stack pages
into memory. This file is installed with PathFinder and is called ash load process pages.c. Installing the
patch requires that you modify some existing kernel files and rebuild; please refer to the file for full details. Note
that this patch is required only for stop-mode debugging.

4.2 Stop-mode Debugging
The following features are supported:
» Linux Kernel debugging:
o Debug modules built as part of the Kernel
»= Linux dynamically loadable Modules/Driver debugging:
o List all inserted modules
o Debug an already inserted module
o Debug a module from init_module ()
= Linux process (application) and library debugging:
o Listall running processes and threads
o Debug a running process
o Debug a process from main ()
o Debug shared libraries

4.2.1 Sample Stop-mode Linux Debugging Session
This section demonstrates Linux Kernel Debugging using PathFinder-XD and the QEMU simulator running
v2.6.32 of the Linux Kernel.

4.2.1.1 Invoking PathFinder-XD and connecting to the QEMU simulator
Invoke PathFinder and configure for the QEMU simulator as shown in section 3. The QEMU Invocation
parameters need to be modified to load the Linux kernel as follows:

-M malta -kernel <drive>:\<path>\vmlinux -hda <drive>:\<path>\rootfs.ext2 -append
"root=/dev/hda rw"

Where <drive>:\<path>\ is the location of your Linux kernel. In our walk-through, we assume this is
c:\MIPS QEMU LINUX v2.6.32\.

For example:
QEMU configuraticn
QEMU executable use default Browse...
Initial target byte order Little Endian v|

Port{prefix -p if using older versions of QEMU) 1234

-M malta -kernel ¢\MIPS_QEMU_LIN UX_V2.6.32i\\rmIinux -hda c\MIPS_QEMU_LINUX v2.6.32\rootfs.ext? -append "root=/dev/hda rw"

Other QEMU invocation parameters

Figure 18. QEMU invocation parameters for Linux debugging

Please note that if you need to debug the kernel from start up, the “-S” option should be appended with the

invocation parameters as follows:
-M malta -kernel <drive>:\<path>\vmlinux -hda <drive>:\<path>\rootfs.ext2 -append
"root=/dev/hda rw" -S

These invocation parameters ensure the Linux kernel (vmlinux) is loaded to the simulator and supplied root file
system (rootfs) is used. Invocation parameters include:

e -—kernel This option loads the Linux kernel (vm1 inux) file to the QEMU simulator

e -hda This option mounts a hard disk image (rootfs.ext?2) for the simulator. This
hard disk contains the root file system (root£s) required for the kernel to load.

e -append This option passes the kernel arguments.

Ashling Product Brief APB211
Page 11 of 35

4.2.1.2 Loading kernel symbol information to PathFinder-XD and executing the kernel image
Connect to the simulator (right-click QEMU and select Connect), right-click over QEMUSIim and select
Download and Launch as follows:

}Eﬂemute Systerns &2 E@" & | | I |
4 B QEMU Sirmulator
4 g QEMU
@ QEMLISina
GoTo k
£ Refresh
Rename... F2
Delete... Delete

@) Download And Launch..,
Feset »

Figure 19. Download and launch

Now, enable Linux debugging via the Enable OS debugging check box (this ensures that PathFinder-XD will add
the Linux specific menu allowing you to perform Module and Process debugging).

In this example, our kernel binary image is already downloaded to the simulator (via the QEMU invocation),
hence, we only need to select Load symbols only (for the kernel image), specify the ELF(binary) path
(c:\MIPS QEMU LINUX v2.6.32\vmlinux) and press Debug. This will load the kernel symbols into
PathFinder-XD to allow symbolic kernel debug.

& QEMU Simulator

Modify attributes and launch

Name QEMU Simulator
[£] Main| %5 Debugger E; Source

Download

ELF (binary) path C:\MIPS_QEMU_LINUX_v2.6.32\vmlinux

Load Options
@ Symbols only
_) Program and symbols

Load (program and symbaols) and verify (program)

Use fast download (requires 512 bytes of RAM)

05 Awareness

[apply [Rewet |

C_?:' [Debug] l Close]

Figure 20. Loading the kernel symbols

Ashling Product Brief APB211
Page 12 of 35

Run the simulator using L button and the kernel will boot in a seperate QEMU shell as shown below (this may
take a few minutes depending on your PC speed):

=] QEMU -]
pcnetd2: 1 cards_found.
serio: iB042 KBD port at Ox60,0x64 irg 1
cerio: i804Z2 AUX port at Ox60,0xb4 irg 12

ice: P5/Z mouse device common for all mice
rtc_cmos rtc_cmos: rtc core: registered rtc_cmos as rtcO
rtcd: alarms up to one day, 242 bytes nuran
rtc—test rtc-test.0: rtc core: registered test as rtcl
rtc—test rtc-test.1: ric core: registered test as rtc2
ICPF cubic registered

ET: Registered protocol family 17

ET: Registered protocol family 15
rtc_cmos rtc_cmos: setting system clock to 2013-01-14 14:27:30 UTC (1358173650)
input: AT Raw 3et Z keyboard as -sclass-input-input0

input: ImExP3-Z Generic Explorer Mouse as ~class-input-sinputl
EXTZ—f= warning: mounting wunchecked fs, rumning e2fsck is recommended

F3: Mounted root (extZ filesystem) on device 3:0.
Freeing prom memory: 956k freed
Freeing unused kernel memory: 168k freed

Initializing random number generator... EXTZ-fs error (device hdal): extZ_lookup:
deleted inode referenced: 598
Remounting filesystem read-only
EXTZ-f= error (device hda): extZ_lookup: deleted inode referenced: 598
Remounting filesystem read-only
read-only file system detected...done

Insert the floppy module. ..
Floppy drive(s): fd0 is 1.44M
FDC 0 is a S8Z07V3B

elcome to Ashling QEMU Linux
shgemu login:

Figure 21. QEMU Linux shell

You can login in to the kernel using root (no password required). Once the kernel is booted, we can halt it within

PathFinder-XD (by pressing Stop/Halt). PathFinder-XD then updates as follows:

" Debug - CAMIPS_QEMU_LINUX +2.6.32\src\linux-2.6.32 14\arch\mips\kemel\genex.5 - PathFinder-XD for MIPS ===
File Edit Linux Target Run Window Help

e o 2
%% Debug 17 S TER-E D @ ¥ = O|[9 Breakpaints 52 | [Memory | 18! Registers | 67’ Expressions FERVNERCS

4 [E] QEMU Simulator [PathFinder-XD Embedded Debugging]
4 18 vmlinux

4 /% Thread/Core [0] (Suspended : Signal : SIGINT:Interrupt)
rdk_wait() at genex.5:147 0x80101bed
u_idle() at process.c:68 0x80103e38
art_kernel() at main.c:682 0x804a3ad¢c

= 0x803d9120
4 AshstubConsole
5 QEMUConsole
pl gdb

T calibrate.c | 8] genexS i = O |- Variables 3 |22 Disassembly 4| @ 4~ =0

nop e Name Type Value

b jr ra
END(rdk_wait)

-macro BUILD_ROLLBACK_PROLOGUE handler
FEXPORT(rollback \handler)

.set push

.set noat

MFCe ke, CPe_EPC

PTR_LA k1, rak_wait

ori ka, exif 32 byte rollback region */
xori ke, @xif

bne ke, ki, of

MTCe ke, CPe_EPC

9: B
8 Remote Systems % B e = ¥ = 0| & console &2 w BB| D[B ~ 09+ = O File Browser 12 S EE =D
& QEMU Simulator QEMU Simulstor [PathFinder-XD Embedded Debugging] gdb traces -
& QEMU 411,710 38-stack-list-frames --thread 1 o || | tyme filter tet
W QEMUSim 411,715 38"done,stack=[frame={level="8",addr="0x88101bed", func="rdk i
ex.5",line="147"},frame={level="1",addr="0x38183e338" , func="cpu_idle %5 vmlinux

c”,line="68"}, frame={level="2" addr="6x884a3a5c" , func="start_kernel
frame={level="3",addr="0x803d9128", func="22"}]

411,715 (gdb)

411,730 39-stack-list-frames --thread 1 6 3

411,735 39°done, stack=[frame={level="0",addr="6x88161bed" , func="rak
ex.5",line="147"}, frame={level="1",addr="0x80183e38" , func="cpu_idle
c",line="68"}, frame={1level="2" addr="8x884a3a5c" , func="start_kernel
frame={level="3",addr="exs8e3d912e", func="22"}]

411,735 (gdb)

« T 3

Figure 22. PathFinder-XD after halting the kernel

Ashling Product Brief APB211
Page 13 of 35

Ashling Product Brief APB211
Page 14 of 35

If no source is shown, then select a function in the Debug window

%% Debug & e] B |22 .5 || &Y "8

a [t] QEMU Simulator [PathFinder-XD Embedded Debugging]

4 1% vnlinux

4 o Thread/Core [0] (Suspended : Signal : SIGINT:Interrupt)

rdk_wait() at genex.5:147 0x80101 bel
cpu_idle() at process. 68 0x80103e38
start_kernel() at main.c:682 0x804a3a5¢
(xB03d9120
g AshstubConsole
| QEMUConsole

g gdb

Figure 23. Selecting a function to display it’s source

which will open a new tab in the source window allowing you to select Edit Source Lookup Path

[] ik wait() at arch/mips/kernel/genex.5:147 0B0101beld 23

Can't find a source file at "arch/mips/kernel/genex5"
Locate the file or edit the source lookup path to include its location.

[Wiew Disassemnbly...]

Locate File...

[Edit Source Lookup Path... I

Figure 24. Edit Source Lookup Path

Specify your source-directory as shown below (make sure Search subfolders is selected)

-

EAdd Source =2

Add a container to the source lookup path c}- r
A directory in the local file system IEE

€2 Add File System Directory (25
File system folder g —
Specify folder and whether subfolders should be searched i- 7

Directory:
CAMIPS_QEMU_LINUX v2.6.32\src

Search subfolders

@:l [oK l [Cancel]
@:l [OK l [Cancel]

Figure 25. Edit File System Directory

Ashling Product Brief APB211
Page 15 of 35

... button.

Notice the following additional windows in PathFinder-XD:

{_ File Browser E@I P =
type filter text
| 4 5 vmlinux | =
> [€ highuid.h 3
& [€ modulec

b g malta-time.c

[> timewait_sock.h
b [genhd.h

b g miih

B ide.h

b [€ keyboard.c

B pgtable-32.h

[- T P

Figure 26. File Browser view showing all kernel source-files

-

C File Browser | B3 Linux Modules &3 i % — O

Address Mame Size

| (%CO05ECAD floppy 56150

Figure 27. Linux Module view showing all currently loaded kernel modules (enabled via Linux menu)

O File Elrowser|g Linux Modules Iﬁ Linux Process &3 l i a — 0
Address PID Coreld Command ASID Status =
0:8047C000 0 0 [swapper] =0 Running
0x8781BBEE 1 0 init Dx5a Sleeping :
0:8781B6ED 2 0 [kthreadd] (040 Sleeping
0xB781B258 3 0 [ksoftirgd/0] a0 Sleeping
0xB781ADD0 4 0 [events/0] =0 Sleeping
087812048 5 0 [khelper] 000 Sleeping
0x87E3FBEE & 0 [async/mgr] 000 Sleeping
0=8783F6E0 9 0 [pm] 00 Sleeping
0:87EEDGED 72 0 [sync_supers] (040 Sleeping
ﬂuT?ﬂFfﬁnﬂ 74 n [hdi-default] (el ’*'nlppninrl: i
] i r

Figure 28. Linux Process view showing all processes (enabled via Linux menu)

Full kernel source-level debug is now possible.

Ashling Product Brief APB211
Page 16 of 35

4.2.1.3 Debug amodule from init_module ()
Use the Linux|Modules|Debug A Module From Initialisation menu to debug a module from its
init module () entry point as follows:

Z_? Debug A Module From Initialisation @

Maodule name CAMIPS_QEMU_LINUX v2.6.32\src\ moduletestichardev.ko

| Debug | | Cancel

Figure 29. Specifying the module to debug

Once specified, you now need to insert the module via the shell as follows:

Elnser‘cthe Maodule @

'.6.' Mow insert the module via Linux console(using INSMOD command)

Press OK and PathFinder will run Linux allowing you to enter a shell command as follows:

insmod chardeu.ko
chardeu: module license "unspecified’ taints kernel.

Dizsabling lock debugging due to kernel taint

Figure 30. Inserting (running) the module

PathFinder-XD then halts the module at init module () allowing module debug. You may have to specify the
location of your source-file as before (C:\MIPS QEMU LINUX v2.6.32\src\moduletest)

_ = = = =
|5 genex.5 It| notifier.c rc| chardev.c &3 8
.release = device_release, /* a.k.3. close */ -
b
* Initialize the module - Register the character device

int init module()
» q
int ret_val;

* Register the character device (atleast try)
ret_wval = register_chrdev(MAJOR_NUM, DEVICE_NAME, &Fops);

printk("\nretval=%d\n",ret_wval);

" I.ega—_'_'.e values s1gniTy an error

m

if (ret wval < @) {
printk(KERN_ALERT "#s failed with ¥d.wn",
"sorry, registering the character device ", ret_wval);

P LT T T Sy [

Figure 31. Module source

Ashling Product Brief APB211
Page 17 of 35

PathFinder-XD’s File Browser will also update to show the source files associated with the module:

{J File Browser &%

B Linux Modules Linux Process = 0O
W =

type filker text

’f;;: vmlinux

%5 chardev.ko

Figure 32. File Browser view showing modules sources

And the Linux Modules window will now list the new module:

G File Browser k!M Linux Proc...

Address

0xC007CE70
DxCO05ECED

Mame
chardev
floppy

Size
2781
56159

Figure 33. Linux Modules window listing the new module

You can also view the internal module kernel structures via the right-mouse button menu as follows:

0 File Browser | B9 Li Linux Process

Address Marme Size
FOCO0TCETD e e
(e Z0O0SECED flo

Load Module Symbaol

Ashling Product Brief APB211
Page 18 of 35

S Breakpoints | [J Memory | i3 Registers |57 Expressions &3 =0
| X R[CIcA %Y

Expression Type Value it 0
a w (struct module®)0x struct module Q007 c870
()= state enum module_state MODULE_STATE_COMIMNG a
s @ list struct list_head [I
- (= name char [60] Qo007 87 c
- [= mkobj struct module_kobject {.}
- ¢ modinfo_attrs struct module_attribute * (xB7abcdB80
- W version const char ™ 00
: m STCVErSion const char ® 0:8799b880 "FE2ABDBDCTDS...
- w holders_dir struct kohject ® (:BTILE4E0
W syms const struct kernel_sym... 0x
- W CrCs const long unsigned int* 0x0
=)= num_syms unsigned int 0
. B kp struct kernel_param * 00
()= nurn_kp unsigned int]
)= num_gpl_syms unsigned int] L= _ .

S W Tt rrmct bt barnal eveen ATl

Figure 34. Viewing the internal kernel module structures

In addition, you can load module symbols for a module that is already loaded (Load Module Symbol menu option
in the right-mouse button menu) as follows:

</ File Browser | B Linux Modu... &3 =) Linux Process| — O

W
Address Mame Size
 0xCO07CBI0 choedes 3701
0xCO05ECHD f Show Module Structure

Load Medule Symbaol

Figure 35. Viewing the internal kernel module structures

4.2.1.4 Debugging a process from main()

Use the Linux|Processes|Debug A Process From main () to debug a process from it’'s entry point (this feature
is only available in stop-mode i.e. when the kernel is halted) as follows:

E Debug A Process From main() @

Process name COMIPS_QEMU_LINUX v2.6.32\src\ashtestapphashtestapp

rootfs Directo ry CAMIPS_QEMU_LIMNUX w2632 rootfs

Shared library

Shared Library Pathis)

Debug I [Cancel

Figure 36. Debugging a process from main ()

Ashling Product Brief APB211
Page 19 of 35

rootfs Directory specifies where the root file-system (rootfs) resides in your host machine. This location is
needed for loading shared library symbols in PathFinder-XD. Once specified, you now need to run the process
from the shell as follows:

rz_? Run the Process @

I.o.l Mow run the process from Linux console

-

Press OK and PathFinder will run Linux allowing you to enter a shell command as follows:

#t .rashtestapp

Figure 37. Running the process

PathFinder-XD then halts the process atmain () function as shown below:
genexs TE| notifier.c T chardev.c Tl ashtestapp.c &3 - O

int main()
1
int file desc, choice;
//Try opening and closing before displaying menu
| file desc = open(DEVICE_FILE_NAME,O RDWR);:
if (file_desc < 8) {
printf({"Can't open device file: ¥s\n", DEVICE_FILE_NAME);
return -1;

close(file desc);

do
1 E
printf({"Menuin====\n"};
printf("1. Read from devicewn2. Write to dewvicehn™};
printf("3. Exitn");
printf({"Enter your choice : "), i

Figure 38. PathFinder-XD halted at the process’s main () function
The File Browser window will update to show the process’s source-code.

Please note: When using the QEMU simulator it is not possible to list processes whilst debugging a
process in stop-mode (e.g. in PathFinder’s Linux Process Window); this restriction is not present when
debugging a process in run-mode or when using hardware based target debugging (e.g. Opella-XD).

4.2.1.5 Debugging arunning process
You can load the symbols for a running process via the Linux Process window. Right-click on the process and
select Load Process Symbol:

Ashling Product Brief APB211
Page 20 of 35

E Load Symbols for process ashtestapp

Process symbol file CAMIPS_QEMU_LINUK v2.6.32\src\ashtestapphashtestapp Browse...

Il g

rootfs Directgr}r C:"\MIPS_QEMU_UNUX_VE.E.REKFDDES Browse...

Shared library

Add
Shared Library Path(s)

Remowve

i

Load l ‘ Cancel

Figure 39. Loading a process’s symbols

4.2.1.6 Library debugging
Debugging of libraries is handled seamlessly without any extra requirements/setup.

4.3 Run-mode Debugging

Run-mode debugging is done via a “simulated” Serial/Ethernet interface and requires an application (GDB server)
running on the simulator. In run-mode, the kernel continues to run when a process (application) breakpoint is
taken. Run-mode debugging requires that the kernel is up and running and allows non-intrusive debug of process
(i.e. the kernel will continue to run even when a process is halted).

4.3.1 Preparing for Run-mode Debugging

For run-mode debugging, a simulated Ethernet connection needs to be established between the host machine
and the simulator (QEMU). This section explains how to configure a networking connection between the host OS
and simulator so that run-mode debugging can be done through Ethernet.

4.3.1.1 Setting up networking between host and QEMU simulator
QEMU uses TAP (http:/en.wikipedia.org/wiki’TUN/TAP) interfaces to provide full networking capability with the
host OS. TAP simulates an Ethernet device entirely in software.

The Windows host OS does not provide a TAP adapter, hence, Windows users will need to download and install a
TAP adapter. In our example we wil use OpenVPN which can be downloaded from
http://openvpn.net/index.php/open-source/downloads.html. Running as administrator, download and install
OpenVPN (selecting all options). Once installed, you will have a new Network Adapter (under Network
Connections). Configure its IP address via the right-mouse Properties menu as follows:

Ashling Product Brief APB211
Page 21 of 35

http://en.wikipedia.org/wiki/TUN/TAP
http://en.wikipedia.org/wiki/Ethernet
http://openvpn.net/index.php/open-source/downloads.html

[openvpn Properties @

Networking | Sharing

Connect using:

u¥ TAP-Win32 Adapter V9

This connection uses the following tems:

& Clignt for Microsoft Networks

@ODS Packet Scheduler

.@ File and Printer Sharing for Microsoft Networks

<& |ntemet Protocol Version & (TCP/IPvE)

B et Prtoool Verson £ TCP/Pvd) |

it Link-Layer Topology Discovery Mapper 170 Driver
<& Link-Layer Topology Discovery Responder

Description

Transmission Control Protocol /Intemet Protocol. The default
wide area network protocol that provides communication
across diverse interconnected networks.

| ok || Ccancel

Figure 40. TAP Adapter

Internet Protocol Version 4 (TCP/IPv4) Properties @

General

You can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically
(@ Uge the following IP address:

IF address: 192 .168 . 10| . 1
Subnet mask: 255,255,255 . O
Default gateway:

Obtain DNS server address automatically
(@) Usg the following DNS server addresses:

Preferred DMS server:

Alternate DNS server:

[Ivalidate settings upan exit

[OK][Cancel]

Figure 41. TAP adapter properties

In our example, we will assign the address 192.168.10.1 as shown above. In Network Connections, rename (via
right-click mouse menu) the TAP network adapter openvpn (note this is case-sensitive, hence, make sure you
specify “openvpn”)

4.3.1.2 Modify QEMU invocation parameters

We now need to modify QEMU invocation parameters to ensure QEMU creates a new virtual Network Interface
Card (NIC) and that it connects to the TAP adapter running on our Windows host.

The QEMU Invocation parameters need to be modified to as follows:

Ashling Product Brief APB211
Page 22 of 35

-M malta -kernel C:\MIPS QEMU LINUX v2.6.32\vmlinux -hda
C:\MIPS QEMU LINUX v2.6.32\rootfs.ext2 -append "root=/dev/hda rw ip=192.168.10.2" -
net nic -net tap,ifname=openvpn

Where:

-net nic will create a virtual NIC

-net tap, ifname=openvpn Will ensure that TAP interface is connected to the openvpn TAP adapter installed
on the host

Note in our example above we have assigned 192.168.10.2 as the IP address of the virtual Linux machine
running on the QEMU simulator. The above invocation will also work for Stop-mode debugging as outlined in the
previous section.

Copy and Paste Warning! Do not copy and paste the above into PathFinder-XD; it will not work due to PDF
issues. The above invocation line can be copied and pasted from the README.TXT supplied with PathFinder-XD.

4.3.2 Sample Run-mode Linux Debugging Session

This section demonstrates Linux Run-mode Process Debugging using PathFinder-XD and the QEMU simulator
running v2.6.32 of the Linux Kernel. The example will demonstrate debugging of a Process and a Module (that
contains functions called from the Process). As before we have to prepare our kernel for debug, download it to
the simulator, execute it and load the kernel symbols into PathFinder. See previous sections 4.1, 4.2.1.1 and
4.2.1.2. Once these steps are complete we are ready to begin debugging our Module and Process as follows:

Ashling Product Brief APB211
Page 23 of 35

43.2.1

1.

Debugging the Module and Process

First we load the Module (using insmod) from our Linux shell as follows:

EXTZ-f= warning: mounting unchecked fs, rumming e2fsck is recommended
F3: Mounted root (extZ filesystem) on device 3:0.

Freeing prom memory: 956k freed

Freeing unused kernel memory: 168k freed

deleted inode referenced: 5938

Remounting filesystem read-only

EXTZ-fs error (device hdal: extZ_lookup: deleted inode referenced: 598
Remounting filesystem read-only

read-only file system detected...done

Insert the floppy module...

Floppy drive(s): fd0 is 1.44HM

FDC 0 is a 582078B

elcome to Ashling QEMU Linux

shgemu login: root

[root@Pashgemu ~1# insmod chardev.ko

hardeu: module license 'unspecified’ taints kernel.
isabling lock debugging due to kernel taint

Registeration is a success The major device number is 100.
If you want to talk to the device driver,

ou’1l have to create a deuvice file.

e suggest you use:

knod char_deuv c 100 0

The device file name is important, because

he ioctl program assumes that's the

file you'll use.

[root@Pashgemu ™ 1#

1 QEMU E=2 B 5

Initializing random number generator... EXTZ2-fs error (device hda): extZ2_lookup:

Figure 42. Loading the Module to be debugged

Note: do not attempt to load a module twice or debugging will not work correctly (use rmmod

chardev. ko if you need to remove or unload the module)

Now, we halt the kernel in PathFinder-XD and load the Module symbols from within the PathFinder-XD

Linux Modules window:

{,» File Browser | B Linux Modules &3 s % — 0O
Address Mame Size
 0xC007C870 chardey- 27501
O 005ECE0 floppy Show Module Structure
F

Load Module Symbol

"€ Load Symbals Of A Module

Module name (without ko) | charde

5

Medule symbol file CAMIPS_QEMU_LINUX v2.6.32\src\moduletest\ chardev.ko

| Browse... |

Cancel |

Figure 43. Loading the Module symbols

Ashling Product Brief APB211
Page 24 of 35

Ashling Product Brief APB211
Page 25 of 35

3. Notice how the File Browser now shows the Module and Kernel symbols:
C,sFiIe Browser i3 B¥ Linux Modules W EH BT

type filker text

s f_s: vmlinux

- % chardev.ko

Figure 44. File Browser showing Kernel and Module symbols

We can double-click on the Module to list the files and double-click on a source-file to show it in the
Source Window. In the below screen-shot we have opened the Module source-file (chardev.c) and set
a breakpoint at the function device write which we wish to debug (i.e. this function located in the
Module is called from the the Process)
Te| delay.c |5 genex.5 Tt| chardev.c &3 = B8
static ssize_t
device write(struct file *file,
const char _ user * buffer, size t length, loff_t * offset)
1

e int 1i;

-

#ifdef DEBUG

printk(KERN_INFO "device write(%p,%s,%d)", file, buffer, length};
#endif

for (1 = 8; 1 < length &8 1 < BUF_LEN; i++)
get user(Message[i], buffer + 1});

Message[i] = "\@";

Message Ptr = Message;
printk("===%s",Message);

Figure 45. Setting a Breakpoint in the Module

Next, we resume execution of the Kernel in PathFinder-XD
%5 Debug & ._,._,Ii|| |i'=€> |'f.%;-v='|f|
a [t] QEMU Simulator [PathFinder-XD Embedded Debugging]
4 vimlinux
w2 Thread/Core [0] (Running : User Request)

g AshstubConsole

o QEMUConsole

o gdb

Figure 46. Running the Kernel

and launch gdbserver on the simulator (i.e. in the Linux shell) specifying the Process we wish to debug
(ashtestapp) . Notice how we tell . /gdbserver which port to listen on (1234)

#t gdbserver :1234 .-rashtestapp
Process .~ashtestapp created: pid = 821

Listening on port 1234

Figure 47. Launching the Process

Ashling Product Brief APB211
Page 26 of 35

5. Now we need to Debug A Process in Run-mode using PathFinder-XD (the Kernel is now running) as

follows:
File Edit | Linux | Target Run Window Help
Modules »
% Debug Processes » List Running Processes &)
4 [c] QEMU Simulator [PathFinder Debug A Process From main(]
4 vmlinux Debug A Process in Run-mode
2 Thread/Core [0] (Runnifig T USer REqUest]]

gl AshstubConsole
g QEMUConsole

o gdb
Figure 48. Debugging a Process in Run-mode

We need to specify the Process:
Run-mode Debugging Options '@/ Source

Process CAMIPS_QEMU_LINUX v2.6.32\src\ashtestapphashtestapp

Figure 49. Specifying the Process

The location of the shared libraries:
Debugger Options

Main Shared Libraries | Connection

Directories;

CAMIPS_QEMU_LINUE w2632\ rootfs

Figure 50. Specifying the Share Library location

And finally, the connection mechanism (TCP in our example) and IP address of the simulator system
(which is running gdbserver):
Debugger Options

| Main I Shared Libraries| Connection |

Host name or IP address: 192,168,102

Port number: 1234

Figure 51. Specifying the Connection mechanism

Ashling Product Brief APB211
Page 27 of 35

Now press Debug to start debugging the Process

H Ashling TCP_Serial connection (QEMU)

Specify Attributes For Debugging A Process In Run-mode

Mame: Ashling TCP_Serial connection (QEMLU)

=| Run-mode Debugging Options | B Source
gging Opt

Debugger Options
i Main

[T]Non-stop mode (Note: Requires non-stop GDB)
[] Force thread list update on suspend

[] Automatically debug forked processes (Note: Requires Multi Process GDB)

(Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run”,

Process CAMIPS_QEMU_LINUX v2.632\src\ashtestapp\ashtestapp Browse..
[#] Stop on startup at: main
Shared Libraries | Connection
GDB debuggen C\Program Files\Ashling'\PathFinder-XDforMIPS\GMUD ebuggermips-linux-gnu-gdb-gemu.exe Browse..
GDB command file: .gdbinit Browse

[Apply

) (fmst]

I Debug

) []

Figure 52. Debugging a Process in Run-mode dialog

6. PathFinder-XD will now update as follows:

2 Debug - C:AMIPS_QEMU_LINUX v2.6.32\src\ashtestapp\ashtestapp.c - PathFinder-XD for MIPS ol ==
File Edit Linux Target Run Window Help
eV io = (Fosbes)
5 Debug 3| % 60 O |2 @ ¢ =]i% | @ 7 = O % Breakpoints &2 | [Memory| i Registers| &7 Eqpressions X%R®-w|EBEE~ -0
[E] QEMU Simulator [PathFinder-XD Embedded Debugging] [#] o chardev.c [line: 135]
&8 vmlinux
& Thread/Core [0] (Running : User Request)
5 AshstubConsale
5 QEMUConsole
wil gdb
[©] Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-made Debugging]
@ ashtestapp [cores: 0]
i Thread [1]843 [core: 0] (Suspended : Breakpoint)
= main() at ashtestapp.ci127 (x400dfc
s gdb
T delay.c |@ genex.s |ﬁ chardev.c [ﬁ ashtestapp.c 11 = 0| 9= Variables i3 |2 Disassembly o | @ X% | rfm~=8
” - Name Type Value
* Main - Call the ioctl functions
*/ 9= file_desc int 0
int main())= choice int 2141647208
int file_desc, choice;
//Try opening and closing before displaying menu
file desc = open(DEVICE FILE NAME,O RDWR);
if (file_desc < @) {
printf("Can't open device file: ¥s\n", DEVICE_FILE NAME);
return -1;
close(file_desc);
do
i I
printf(“Menu\n====\n"); L i
printf("1. Read from deviceln2. Write to device\n"); 3
printf("3. Exitin");
printf("enter your choice : ");
scanf("%d",&choice);
switch(cheice) - -
b » « v
BRemotesystems 12| B &1 | @ | B 7 = B E console £3 % % | B 5B LB | (BB e B - £ - = O |G File Browser 52 | B8 Linux Modules $EETO
& QEMU Simulator Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-mode Debugging] gdb.
& GEMU || typefilter text
[Qemusim #5 vmlinux
35 chardevke

%5 ashtestapp

m

Ashling Product Brief APB211
Page 28 of 35

Figure 53. PathFinder-XD in Run-mode

If no source is shown then select the Edit Source Lookup Path... button

genex.s [main() at ashtestapp.c:127 0x400dfe 52

tan't find a source file at "ashtestapp.c”
Locate the file or edit the source lookup path to include its location.

[‘u‘iew Disassembly... l

Locate File...

[Edit Source Lookup Path...]

Figure 54. Edit Source Lookup Path

and specify your source-directory as shown below:

27 Add File System Directery [

File system folder o
Specify folder and whether subfolders should be searched f 7
Directory:

CA\MIPS_QEMU_LINUX v2.6.32\src

Search subfolders

(?:' oK l [Cancel

Figure 55. Edit File System Directory

Notice how:
e The Debug window show both the Kernel (Embedded Debugging) and Process (Run-mode
Debugging) status:
%5 Debug I3 o () @ | 3 @ liv |82 ¥ =8
[t] QEMU Sirmulator [PathFinder-XD Embedded Debugging]
wmlinux
@ Thread/Core [0] (Running : User Request)
g AshstubConsole
g QEMUConsole
pol gdb
[E] Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-mode Debugging]
8 ashtestapp [cores: 0]
o® Thread [1] 843 [core: 0] (Suspended : Breakpoint)
= main() at ashtestapp.c127 0xd00dfc

pl gdb
Figure 56. PathFinder-XD Debug Window showing Kernel and Process (Kernel Run-mode) status

e The File Browser shows the Module, Process and Kernel sources:

Ashling Product Brief APB211
Page 29 of 35

QFiIe Browser &7 ‘E Linux Modules ::éh =

type filker text

s #;& vmlinux

B #;& chardev.ko

4 T ashtestapp
> [stdio.h
€ types.h
. [pthreadtypes.h
: [uClibc_stdic.h
s 2] stddefh
: €] ashtestapp.c

Figure 57. PathFinder-XD File Browser showing Module, Process and Kernel sources

e The Source window shows the source code for our Process from main ()
T delay.c | [5] genex.S |‘@ chardev.c [‘@ ashtestapp.c 3

* Main - Call the iocctl functions
* .Iu'
int main()
1
int file_desc, choice;
/{Try opening and closing before displaying menu
file desc = open(DEVICE_FILE_NAME,O_ RDWR);
if (file_desc < @) {
printf({"Can't open device file: ¥s\n", DEVICE_FILE_NAME);
return -1;

close(file_desc);

do

1
printf{"Menuin====\n");
printf("1. Read from dewvice'n2. Write to deviceln");
printf({"3. Exit\n");

Figure 58. Process Source

7. We can now debug our Process as normal with the Kernel running in the background. After running the
process, choose the options as seen in the figure below:

Ashling Product Brief APB211
Page 30 of 35

= | QEMU [Stopped] o |5 [
shgemu login: root
[rootRPashgemu “1# insmod chardev.ko

hardeu: module license “unspecified’ taints kernel.

isabling lock debugging due to kernel taint

Registeration is a success The major device number is 100.
If you want to talk to the device driver,
ou’1l have to create a device file.

e suggest you use:

knod char_deuv c 100 0
The device file name is important, because

he ioctl program assumes that’s the
file you'll use.

[rootRPashgemu “1# gdbserver :1234 .rashtestapp
Process .~ashtestapp created: pid = 843
istening on port 1234

Remote debugging from host 192.168.10.1
evice_open(87995f40)
evice_release(8741ac10,87995f40)

enu

1. Read from device

. Write to device

. Exit
Enter your choice : 2
Enter data to write :

evice_open(878b1dcO)

Figure 59. Running the process

This will invoke the functions with a breakpoint set and PathFinder-XD’s Debug window will update as follows:
#"FDEbUQ X (1= [/ S 1= "%y = =08

4 [€] QEMU Simulator [PathFinder-XD Embedded Debugging]
a 1 vmlinux
4 f# Thread/Core [0] (Suspended : Breakpoint)
device writel) at chardev.c:138 0xc007 c0bE
wfs_writel() at read_write.c:347 0xB01893cc
sys_write() at read_write.c:399 0:801895ac
handle_sys() at scall32-032.5:59 0:8010a54
0400430
gl AshstubConsole
g QEMUConsole
ol gdb
4 =.L Ashling TCP_Serial connection (QEMU]) [PathFinder-XD Run-mede Debugging]
a ashtestapp [cores: 0]
p® Thread [1]843 [core: 0] (Running : User Request)
p gdb

Figure 60. PathFinder-XD Debug Window showing the Kernel halted

Notice how the Kernel is now shown as halted (i.e. PathFinder-XD has automatically switched from run-mode to
stop-mode as the kernel is halted due to the breakpoint in the Module). This demonstrates how PathFinder-XD
easily switches between stop-mode and run-mode within the same debug session.

4.3.2.2 Debugging multi-threaded applications
Multi-threaded applications are supported in run-mode debugging only. All the application threads and the
associated Call Stack for each thread are listed. In addition, it is possible to set thread specific breakpoints.

To debug a multi-threaded application in run-mode, complete the following steps:

1. Launch gdbserver from the simulator (i.e. in the Linux shell) specifying the application we wish to debug
(threadtestapp).

Ashling Product Brief APB211
Page 31 of 35

[rootRashgenu ™ 1# gdbserver :1234 .-threadtestapp
Process .-threadtestapp created; pid = 850

Listening on port 1234

Figure 61. Launching multi-threaded Process

2. Now we need to Debug A Process in Run-mode using PathFinder-XD (the Kernel is now running) as
follows:
File Edit Target Run Window Help
Modules »
o3 Debug Processes » List Running Processes F%‘;.
a [c] QEMU Simulator [PathFinder Debug A Process From main()
4 wimlinux Debug A Process in Run-mode
& Thread/Core [0] (Runnifg T User REqUest]]
- AshstubConsole
w1 QEMUConsole
r,- gdb
Figure 62. Debugging a Process in Run-mode
3. Select the application (Process) to debug
|=| Run-maode Debugging Options E}y Source
Process CAMIPS_QEMU_LINUX v2.6.32\src\threadtestapphthreadtestapp
4.

Choose the location of shared libraries:

Debugger Options
Main | Shared Libraries | Connection
Directories:

CAMIPS_QEMU_LINUK v2.6.32\rootfs

Figure 63. Specifying the Share Library location

5. And finally, the connection mechanism (TCP in our example) and IP address of the simulator (which is
running gdbserver):

Debugger Options
Main | Shared Libraries | Connection
Type: |TCF‘ v|

Host name or IP address: 192.168.10.2
Pert number: 1234

Figure 64. Specifying the Connection mechanism

6. Now press Debug to start debugging the Process

7. The program will now run to the main () function.

Ashling Product Brief APB211
Page 32 of 35

" Debug - C:AMIPS_QEMU_LINUX_v2 6 32\src\threadtestapp\threadtestapp.c - PathFinder-XD for MIPS =R
Eile Edit Linux Target Run Window Help

T i (5 Debug)
35 Debug 5 e = | i+ | @2 7 = O 9% Breakpoints 5% | [Memory| 88 Registers | 5 Bepressions NEESRE
[€] QEMU Simulator [PathFinder-XD Embedded Debugging]

2 vmlinux

@ Thread/Care [0] (Running : User Request)
3 AshstubConsole
5 QEMUConsole
s gdb

[€] Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-mode Debugging]

{1 threadtestapp [cores: 0]

+® Thread [1] 843 [core: 0] (Suspended : Breakpoint)

= main() at threadtestapp.c:20 0x40083c

s gdb
el delay.c [5] genex.s TE| threadtestapp.c &2 = O ||69= Variables 3 | 2= Disassembly | e~ = 4d
- Mame Type Value

#define _REENTRANT
#include_wthread‘m (x)- thrl pthread_t 716480640
#include <stdic.h> 09= thi2 pthread_t 2141686808
#include <sys/ioctl.h> » msgl const char * 0x7faTedag "
#include <termios.h> » msg2 const char™ &0
#include <unistd.h> A
/* function prototypes */
void* threadfn{ void*);
int main(void) m

pthread_t thrl, thr2;

const char* msgl = "Threadl";

const char® msg2 = "Thread2"; n

pthread_create(&thrl, NULL, threadfn, (void*)msgl);

pthread_create(&thr2, NULL, threadfn, (void®)msg2);

pthread_jein(thri, NULL)3 o -
i f ‘ f

28 Remote Systems 52 B & |5 ¥ = 5| E console &3 x 50| 5B | [EEI[FE 2 ~ rd - = B[File Browser 2 $ ®mE~8
&% QEMU Simulator QEMU Simulator [PathFinder-XD Embedded Debugging] gdb
N type filter text
& QEMU -
B aemusim F—
%5 threadtestapp
« i »

e

Figure 65. Program runs to main()

8. Set a breakpoint in thread£fn () and run to that point, the Debug view updates as follows:

%% Debug 2 [|§}.@-[ﬁf |Ii.'=€> |'€.{><}l;-v='|f|
Fi wmlinux -

p# Thread/Core [0] (Running : User Request)
g AshstubConsole
o QEMUCensole
g gdb
4 E Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-mode Debugging]
4 1% threadtestapp [cores: 0]
4 i Thread [3] 845 (Suspended : Breakpoint]
threadfn() at threadtestapp.c:40 0400950
Dx2aac30fi

4 f# Thread [2] 844 (Suspended : Container) E
= poll{) at (x2ab25eed
= _ pthread_manager() at 0x2aac3610
= _ thread_start(} at 0x2ab2315¢
4 f# Thread [1] 843 [core: 0] (Suspended : Container)
= =igsuspend() at 0x2ab279a8
= _ pthread_wait_for_restart_signal() at (x2aacibfd
= pthread_create() at (x2aac9794
= main() at threadtestapp.c:23 0x400878
gl gdb e

1

Figure 66. Multi-threaded Debug View
Notice how the threads are listed and the call stack for each thread is shown in the Debug view. While clicking
on each thread context, all PathFinder-XD windows will update accordingly (i.e. thread specific).

Ashling Product Brief APB211
Page 33 of 35

To set a thread specific breakpoint:

Set a breakpoint in a location by double clicking on the ruler.
Right click the on the breakpoint in the ruler and choose Breakpoint Properties

'@ delay.c ‘] genexs I'@ threadtestapp.c %
return ©;
i
void* threadfn(void* msg)|
1
int exit =8;
int i;
for (1 = @; i< 28; i++){
iff Ai%? == @&

Toggle Breakpoint
Disable Breakpoint
Breakpoint Properties...
Breakpoint Types

Add Bookmark...
Add Taszk...

B |l

Show Quick Diff

Show Line Numbers

Preferences...

Toggle Hardware Breakpoint

= a8 E
Ctrl+Shift+Q

Bl console 32 & R
QEMU Simulator [PathFinder-XD Embed:

Figure 67. Selecting Breakpoint Properties

And in the filtering section, check the threads you wish to associate with the breakpoint.

Zz Properties for =
type filter text Filter -
Actions
Common Restrict to Selected Processes and Threads:
Filter a []&8 venlinux
[7] u# Thread[1]1Thread/Core
4 [H &8 threadtestapp
p# Thread[3] 851
7] # Thread[2] 850
[& Thread[1] 849
@ [oK J [Cancel]
56

Figure 68. Breakpoint Properties Dialog

Click OK to set the breakpoint

Ashling Product Brief APB211

Page 34 of 35

4.3.2.3 Debugging more than one application at the same time

To debug more than one application or process at a time, you must launch a separate gdbserver for each
process. Use separate port number for each GDB server and use the “s” symbol at the end of the command.
Each gdbserver process will start in the background as shown in screenshot.

[rootRPashgenu ™ 1# gdbseruver :1234 . threadtestapp &

[11 859

[rootRPashgenu ™ 1# Process .- threadtestapp created: pid = 862
Listening on port 1234

[rootRashgenu ™ 1# gdbseruver :2345 .-rashtestapp &
[Z2]1 864

Process .rashtestapp created; pid = 867
[rootRashgenun "~ 1# Listening on port 2345

Figure 69. Launching Multiple Processes

You can how connect to each process via the Debug A Process in Run-mode menu. The Debug View will show
each process as follows:

%% Debug 7 O] ®| 3 @ i ea ¥ = 8
4 [T QEMU Simulator [PathFinder-XD Ermbedded Debugging]
4 vmlinux
& Thread/Core [0] (Running : User Request)
g AshstubConsole
g QEMUConsole
p| gdb
4 =|£, Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-mode Debugging]
4 1 threadtestapp [cores: 0]
i Thread [3] 845 (Suspended : Container)
. g Thread [2] 844 (Suspended : Container)
. f® Thread [1] 843 [core: 0] (Suspended : Signal : 51G32:Real-time event 32)
pl gdb
4 =|L| Ashling TCP_Serial connection (QEMU) [PathFinder-XD Run-mode Debugging]
4 1 ashtestapp [cores: 0]
4 # Thread [1] 849 [core: 0] (Suspended : Breakpoint)
= main(]) at ashtestapp.c:127 0:400dfc
pl gdb

Figure 70. Debugging Multiple Processes

These examples show the power of PathFinder-XD’s Embedded Linux support, in particular, the ability to debug
Processes whilst the Kernel is running (Run-mode) and to debug the interaction between Processes and the

Kernel (including Kernel modules). We hope vyou like itl Please send your feedback to
hugh.okeeffe@nestgroup.net

Doc: APB211-PF-XD_MIPS_SIM, Hugh O’Keeffe and Suresh PC, Ashling Microsystems

Ashling Product Brief APB211
Page 35 of 35

