
Ashling Product Brief APB211
PathFinder-XD for MIPS™ Powered Devices

Page 1 of 35

Ashling Product Brief APB211
v.1.0.6, 15th January 2013

PathFinder-XD for MIPS™ Powered Devices

Simulator

Contents
1. Introduction 2
2. Installation 2

2.1 Windows™ Installation 2
2.2 Linux Installation 2

3. Using PathFinder-XD with the QEMU simulator 3
4. Embedded Linux Debugging with PathFinder-XD and the QEMU Simulator 10

4.1 Preparing for debugging 10
4.1.1 Building with debug symbols 10
4.1.2 Compiler optimisations 10
4.1.3 On-demand paging 11

4.2 Stop-mode Debugging 11
4.2.1 Sample Stop-mode Linux Debugging Session 11

4.2.1.1 Invoking PathFinder-XD and connecting to the QEMU simulator 11
4.2.1.2 Loading kernel symbol information to PathFinder-XD and executing
the kernel image 12
4.2.1.3 Debug a module from init_module() 17
4.2.1.4 Debugging a process from main() 19
4.2.1.5 Debugging a running process 20
4.2.1.6 Library debugging 21

4.3 Run-mode Debugging 21
4.3.1 Preparing for Run-mode Debugging 21

4.3.1.1 Setting up networking between host and QEMU simulator 21
4.3.1.2 Modify QEMU invocation parameters 22
Copy and Paste Warning! Do not copy and paste the above into PathFinder-
XD; it will not work due to PDF issues. The above invocation line can be copied
and pasted from the README.TXT supplied with PathFinder-XD. 23

4.3.2 Sample Run-mode Linux Debugging Session 23
4.3.2.1 Debugging the Module and Process 24
4.3.2.2 Debugging multi-threaded applications 31
4.3.2.3 Debugging more than one application at the same time 35

Ashling Product Brief APB211
Page 2 of 35

1. Introduction
PathFinder-XD is a C/C++/Assembly debugger based on the Eclipse framework and supports debugging using
the QEMU software simulator (www.qemu.org) or the Ashling Opella-XD Debug Probe connected to MIPS™
powered target hardware.

Figure 1. PathFinder-XD for MIPS™

PathFinder-XD supports both “bare-metal” (no target operating system) and Embedded Linux based debugging.
This application note introduces PathFinder-XD Simulator version and covers using PathFinder-XD with the
QEMU Simulator.

2. Installation
PathFinder-XD can be hosted under Windows™ or x86 based Linux and installation requires full administration
privileges.

Please note: If you have PathFinder-XD already installed then please uninstall it before proceeding.

2.1 Windows™ Installation
Run the SETUP.EXE program from the Windows directory on the supplied CD (or download) and follow the on-

screen instructions.

2.2 Linux Installation
Run the ./SETUP32 (32-bit Linux) or ./SETUP64 (64-bit Linux) program from the supplied CD (or download)

and follow the on-screen instructions. PathFinder-XD for MIPS is tested on the following Linux platforms:

 Fedora 13/Ubuntu 10.04 LTS 32-bit/64-bit versions

 Ubuntu 08.04 LTS 32-bit/64-bit (requires a specific version of PathFinder-XD)

Please note that the 64-bit Linux version of PathFinder-XD for MIPS requires the 32-bit library package ia32-

libs library, hence, make sure this is installed in your system. For example, to install on Ubuntu/Debian, issue

the following command:

> $sudo apt-get install ia32-libs

http://www.qemu.org/

Ashling Product Brief APB211
Page 3 of 35

3. Using PathFinder-XD with the QEMU simulator
In this section we will look at using PathFinder-XD with the QEMU simulator. Ashling provide a binary (executable)
version of the QEMU simulator built for the MIPS architecture installed and ready to run. To use QEMU with
PathFinder-XD complete the follow the following steps:

1. Run PathFinder-XD

2. PathFinder-XD will then load as follows:

Figure 2. PathFinder-XD for MIPS™ loading

If this is your first-time running then you will be prompted to specify your Workspace (default directory for
projects etc). Accept the default which is located in PathFinder-XD’s installation directory.

3. In PathFinder-XD, create a New Target Configuration via the Target menu

Figure 3. Target Configuration

Ashling Product Brief APB211
Page 4 of 35

and select the Debug using Simulator (QEMU) option as shown below

Figure 4. Selecting Remote System Type

4. Click Next and we can now configure our QEMU settings as shown below:

Figure 5. QEMU Simulator Configuration

Settings include:

 QEMU executable: The actual binary file executed by PathFinder-XD when invoking QEMU.
Usually not changed

 Initial target byte order: Required endianness

 Port: The TCP/IP port used by PathFinder-XD to communicate with QEMU. Usually not changed

Ashling Product Brief APB211
Page 5 of 35

 QEMU Invocation parameters: Allows you to configure QEMU. For more details on QEMU
configuration, see the following links:

http://wiki.qemu.org/download/qemu-doc.html#sec_005finvocation

http://wiki.qemu.org/download/qemu-doc.html#MIPS-System-emulator

Click Finish when done.

5. PathFinder-XD will now create a new QEMU Simulator setting in it’s Remote Systems Window as shown

below:

Figure 6. Remote Systems Window

Right-click on QEMU and click Connect to invoke QEMU. Once invoked, the Remote Systems window
will update as follows:

Figure 7. Remote Systems Window after QEMU connection

6. We can now download a program to QEMU by right-clicking over QEMUSim and selecting Download and

Launch

Figure 8. Download and Launch

PathFinder-XD includes a suitable program (C:\Program Files\Ashling\PathFinder-

XDforMIPS\examples\LE\UnCached\Debug-LE\UnCached_LE.elf) for running with QEMU.

http://wiki.qemu.org/download/qemu-doc.html#sec_005finvocation
http://wiki.qemu.org/download/qemu-doc.html#MIPS-System-emulator

Ashling Product Brief APB211
Page 6 of 35

Figure 9. Specifying Target Program to Download

In the Debugger tab you can tell PathFinder-XD to stop at main() as shown below

Figure 10. Stopping at main()

When finished, press Debug to load your program.

Ashling Product Brief APB211
Page 7 of 35

7. PathFinder-XD will now download the program to QEMU and update it’s Windows as follows allowing you to
start your Debug session:

Figure 11. PathFinder-XD after program download

8. You can now control execution (start, stop, step etc.) using the Debug bar:

 Go

 Stop/Halt

 Step Into, Over and Return (Out)

 Terminate (this button actually terminates the debug session meaning we have to Download and
Launch again)

Figure 12. Execution Control

When setting/toggling breakpoints in the Source and Disassembly Windows, make sure the mouse pointer is
hovering over the left-most column (known as the ruler) of the Window as shown below:

Figure 12. Setting a breakpoint

Ashling Product Brief APB211
Page 8 of 35

9. To watch a variable or expression, select it using the mouse and Add Watch Expression via the right-mouse
button menu as show below:

Figure 13. Adding a Watch Expression

Figure 14. Expression window showing watched expression

 You can also quickly watch an expression by hovering the mouse pointer over it as shown below:

Figure 15. Quick watch via mouse hover

Ashling Product Brief APB211
Page 9 of 35

10. PathFinder-XD supports a Console Windows (or Views) which can be opened from the Window menu:

Figure 16. PathFinder-XD Views

Console. Allows you to enter debug commands and view their output. The GNU GDB syntax is fully
supported. See here for details: http://sourceware.org/gdb/current/onlinedocs/gdb/index.html or for a
handy quick-reference card see here: http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Figure 17. PathFinder-XD Console showing the output of the info reg command

For example, to dump 16 words of memory in hex format from 0xA0004200 enter the examine command
as follows:

x /16wx 0xA0004200

0xa0004200: 0x00000000 0x00000000 0x74697257 0x20676e69

0xa0004210: 0x41206f74 0x6f632020 0x656c706d 0x2e646574

0xa0004220: 0x00000000 0xa0004228 0x00000004 0xa0004238

0xa0004230: 0x00000000 0x00000000 0x00000000 0x00000000

Console commands can also be stored in a text file (GDB script file) and executed from PathFinder-XD’s
Run menu.

http://sourceware.org/gdb/current/onlinedocs/gdb/index.html
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Ashling Product Brief APB211
Page 10 of 35

4. Embedded Linux Debugging with PathFinder-XD and the QEMU
Simulator

PathFinder-XD supports Embedded Linux Debugging for kernels based on v2.6 or later. Support works in two
modes:

 Stop-mode: In stop-mode debugging, the whole system is halted (e.g. kernel and applications) whenever
a breakpoint is taken.

 Run-mode: Run-mode debugging requires an application (GDB server) running on the QEMU simulator.
In run-mode, the kernel continues to run when an application breakpoint is taken.

Stop-mode debugging is useful for bringing up the kernel as it allows debugging from reset. Stop-mode can also
be used for process debugging, however, the kernel/interrupts etc. will not continue to run when halted (unlike
run-mode). When stop-mode debugging a process, PathFinder-XD automatically scans the kernel MMU mapping
for that process and sets up the MIPS core TLB to allow debug access to the process’s memory area.

Run-mode debugging requires that the kernel is up and running and allows non-intrusive debug of a process (i.e.
the kernel will continue to run even when a process is halted). Run-mode also supports thread-aware breakpoints
and simultaneous debug of multiple processes.

This section demonstrates Linux Kernel Debugging using PathFinder-XD and the QEMU simulator running
v2.6.32 of the Linux Kernel on a Windows host machine. A suitable, pre-built version of the v2.6.32 Linux Kernel
and root file-system is also available for download from Ashling

(http://www.ashling.com/support/MIPS/QEMU_LINUX/MIPS_QEMU_LINUX_v2.6.32.ZIP); this should

be installed by unzipping on to your local hard-disk (ensure you preserve the directory structure as present in the
ZIP file).

Ashling recommend a high-spec PC (e.g. dual-core with 4GB memory) for use with this example given the
processing-power required to run Linux on the QEMU simulator.

4.1 Preparing for debugging
This section is only necessary if you are building/using your own Kernel; the version supplied by Ashling includes
all of the following requirements.

4.1.1 Building with debug symbols
Your kernel, modules, processes, libraries, drivers etc. must be built with debug symbols as PathFinder-XD needs
to access global structures and variables etc. to support Linux debugging. Please note that debug symbols for

Linux kernel (vmlinux) are required to debug user-mode applications in stop-mode (to allow PathFinder-XD to

handle memory mapping which requires kernel symbols). Kernel symbols are not required for run-mode
debugging.

 For the kernel, run make menuconfig, select Kernel hacking, enable Kernel debugging and Compile the
kernel with debug and run make to rebuild the kernel with debug symbols.

 For non-kernel items, add the compiler gcc switch -g (which will generate debug symbols) to your

makefile and rebuild.

4.1.2 Compiler optimisations
Compiler optimisations should not be used as they can cause misalignment between the generated symbolic
information and the actual generated machine code thus causing problems with debugging. In particular, the flag

--ffunction-sections should not be used as it will create .text sections for every function causing problems

for PathFinder-XD. See here for more details: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html. To
remove these optimizations, change your makefile and rebuild e.g.:

Change arch/mips/Makefile

from:

cflags-y := --ffunction-sections (Line number 51 in Linux kernel 2.6.27)

to:

#cflags-y := --ffunction-sections

http://www.ashling.com/support/MIPS/QEMU_LINUX/MIPS_QEMU_LINUX_v2.6.32.ZIP
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Ashling Product Brief APB211
Page 11 of 35

4.1.3 On-demand paging
Linux uses “on-demand paging” meaning that a process’s (and its dependant libraries) code, data and stack are
not actually paged into memory until they are first used. This can cause problems when you wish to “stop-mode”
debug a process from its initialisation as it may not yet be present in memory. For example, you cannot set
software breakpoints which require patching of the software breakpoint instruction into the appropriate process ’s
memory location until the actual associated process code page is in memory. Depending on the size of your
target’s memory space and your memory management unit (MMU configuration), you may or may not have this
issue. If you do then Ashling provide a kernel patch that will force all of a process’s code, data and stack pages

into memory. This file is installed with PathFinder and is called ash_load_process_pages.c. Installing the

patch requires that you modify some existing kernel files and rebuild; please refer to the file for full details. Note
that this patch is required only for stop-mode debugging.

4.2 Stop-mode Debugging
The following features are supported:

 Linux Kernel debugging:
o Debug modules built as part of the Kernel

 Linux dynamically loadable Modules/Driver debugging:
o List all inserted modules
o Debug an already inserted module
o Debug a module from init_module()

 Linux process (application) and library debugging:
o List all running processes and threads
o Debug a running process
o Debug a process from main()

o Debug shared libraries

4.2.1 Sample Stop-mode Linux Debugging Session
This section demonstrates Linux Kernel Debugging using PathFinder-XD and the QEMU simulator running
v2.6.32 of the Linux Kernel.

4.2.1.1 Invoking PathFinder-XD and connecting to the QEMU simulator
Invoke PathFinder and configure for the QEMU simulator as shown in section 3. The QEMU Invocation
parameters need to be modified to load the Linux kernel as follows:

-M malta -kernel <drive>:\<path>\vmlinux -hda <drive>:\<path>\rootfs.ext2 -append

"root=/dev/hda rw"

Where <drive>:\<path>\ is the location of your Linux kernel. In our walk-through, we assume this is
c:\MIPS_QEMU_LINUX_v2.6.32\.

For example:

Figure 18. QEMU invocation parameters for Linux debugging

Please note that if you need to debug the kernel from start up, the “-S” option should be appended with the

invocation parameters as follows:
-M malta -kernel <drive>:\<path>\vmlinux -hda <drive>:\<path>\rootfs.ext2 -append

"root=/dev/hda rw" -S

These invocation parameters ensure the Linux kernel (vmlinux) is loaded to the simulator and supplied root file

system (rootfs) is used. Invocation parameters include:

 -kernel This option loads the Linux kernel (vmlinux) file to the QEMU simulator

 -hda This option mounts a hard disk image (rootfs.ext2) for the simulator. This

hard disk contains the root file system (rootfs) required for the kernel to load.

 -append This option passes the kernel arguments.

Ashling Product Brief APB211
Page 12 of 35

4.2.1.2 Loading kernel symbol information to PathFinder-XD and executing the kernel image
Connect to the simulator (right-click QEMU and select Connect), right-click over QEMUSim and select
Download and Launch as follows:

Figure 19. Download and launch

Now, enable Linux debugging via the Enable OS debugging check box (this ensures that PathFinder-XD will add
the Linux specific menu allowing you to perform Module and Process debugging).

In this example, our kernel binary image is already downloaded to the simulator (via the QEMU invocation),
hence, we only need to select Load symbols only (for the kernel image), specify the ELF(binary) path

(c:\MIPS_QEMU_LINUX_v2.6.32\vmlinux) and press Debug. This will load the kernel symbols into

PathFinder-XD to allow symbolic kernel debug.

Figure 20. Loading the kernel symbols

Ashling Product Brief APB211
Page 13 of 35

Run the simulator using button and the kernel will boot in a seperate QEMU shell as shown below (this may
take a few minutes depending on your PC speed):

Figure 21. QEMU Linux shell

You can login in to the kernel using root (no password required). Once the kernel is booted, we can halt it within

PathFinder-XD (by pressing Stop/Halt). PathFinder-XD then updates as follows:

Figure 22. PathFinder-XD after halting the kernel

Ashling Product Brief APB211
Page 14 of 35

Ashling Product Brief APB211
Page 15 of 35

If no source is shown, then select a function in the Debug window

Figure 23. Selecting a function to display it’s source

which will open a new tab in the source window allowing you to select Edit Source Lookup Path… button.

Figure 24. Edit Source Lookup Path

Specify your source-directory as shown below (make sure Search subfolders is selected)

Figure 25. Edit File System Directory

Ashling Product Brief APB211
Page 16 of 35

Notice the following additional windows in PathFinder-XD:

Figure 26. File Browser view showing all kernel source-files

Figure 27. Linux Module view showing all currently loaded kernel modules (enabled via Linux menu)

Figure 28. Linux Process view showing all processes (enabled via Linux menu)

Full kernel source-level debug is now possible.

Ashling Product Brief APB211
Page 17 of 35

4.2.1.3 Debug a module from init_module()

Use the Linux|Modules|Debug A Module From Initialisation menu to debug a module from its

init_module() entry point as follows:

Figure 29. Specifying the module to debug

Once specified, you now need to insert the module via the shell as follows:

Press OK and PathFinder will run Linux allowing you to enter a shell command as follows:

Figure 30. Inserting (running) the module

PathFinder-XD then halts the module at init_module() allowing module debug. You may have to specify the

location of your source-file as before (C:\MIPS_QEMU_LINUX_v2.6.32\src\moduletest)

Figure 31. Module source

Ashling Product Brief APB211
Page 18 of 35

PathFinder-XD’s File Browser will also update to show the source files associated with the module:

Figure 32. File Browser view showing modules sources

And the Linux Modules window will now list the new module:

Figure 33. Linux Modules window listing the new module

You can also view the internal module kernel structures via the right-mouse button menu as follows:

Ashling Product Brief APB211
Page 19 of 35

Figure 34. Viewing the internal kernel module structures

In addition, you can load module symbols for a module that is already loaded (Load Module Symbol menu option
in the right-mouse button menu) as follows:

Figure 35. Viewing the internal kernel module structures

4.2.1.4 Debugging a process from main()

Use the Linux|Processes|Debug A Process From main() to debug a process from it’s entry point (this feature

is only available in stop-mode i.e. when the kernel is halted) as follows:

Figure 36. Debugging a process from main()

Ashling Product Brief APB211
Page 20 of 35

rootfs Directory specifies where the root file-system (rootfs) resides in your host machine. This location is

needed for loading shared library symbols in PathFinder-XD. Once specified, you now need to run the process
from the shell as follows:

Press OK and PathFinder will run Linux allowing you to enter a shell command as follows:

Figure 37. Running the process

PathFinder-XD then halts the process at main() function as shown below:

Figure 38. PathFinder-XD halted at the process’s main() function

The File Browser window will update to show the process’s source-code.

Please note: When using the QEMU simulator it is not possible to list processes whilst debugging a
process in stop-mode (e.g. in PathFinder’s Linux Process Window); this restriction is not present when
debugging a process in run-mode or when using hardware based target debugging (e.g. Opella-XD).

4.2.1.5 Debugging a running process
You can load the symbols for a running process via the Linux Process window. Right-click on the process and
select Load Process Symbol:

Ashling Product Brief APB211
Page 21 of 35

Figure 39. Loading a process’s symbols

4.2.1.6 Library debugging
Debugging of libraries is handled seamlessly without any extra requirements/setup.

4.3 Run-mode Debugging
Run-mode debugging is done via a “simulated” Serial/Ethernet interface and requires an application (GDB server)
running on the simulator. In run-mode, the kernel continues to run when a process (application) breakpoint is
taken. Run-mode debugging requires that the kernel is up and running and allows non-intrusive debug of process
(i.e. the kernel will continue to run even when a process is halted).

4.3.1 Preparing for Run-mode Debugging
For run-mode debugging, a simulated Ethernet connection needs to be established between the host machine
and the simulator (QEMU). This section explains how to configure a networking connection between the host OS
and simulator so that run-mode debugging can be done through Ethernet.

4.3.1.1 Setting up networking between host and QEMU simulator
QEMU uses TAP (http://en.wikipedia.org/wiki/TUN/TAP) interfaces to provide full networking capability with the
host OS. TAP simulates an Ethernet device entirely in software.

The Windows host OS does not provide a TAP adapter, hence, Windows users will need to download and install a
TAP adapter. In our example we will use OpenVPN which can be downloaded from
http://openvpn.net/index.php/open-source/downloads.html. Running as administrator, download and install
OpenVPN (selecting all options). Once installed, you will have a new Network Adapter (under Network
Connections). Configure its IP address via the right-mouse Properties menu as follows:

http://en.wikipedia.org/wiki/TUN/TAP
http://en.wikipedia.org/wiki/Ethernet
http://openvpn.net/index.php/open-source/downloads.html

Ashling Product Brief APB211
Page 22 of 35

Figure 40. TAP Adapter

Figure 41. TAP adapter properties

In our example, we will assign the address 192.168.10.1 as shown above. In Network Connections, rename (via
right-click mouse menu) the TAP network adapter openvpn (note this is case-sensitive, hence, make sure you
specify “openvpn”)

4.3.1.2 Modify QEMU invocation parameters
We now need to modify QEMU invocation parameters to ensure QEMU creates a new virtual Network Interface
Card (NIC) and that it connects to the TAP adapter running on our Windows host.

The QEMU Invocation parameters need to be modified to as follows:

Ashling Product Brief APB211
Page 23 of 35

-M malta -kernel C:\MIPS_QEMU_LINUX_v2.6.32\vmlinux -hda

C:\MIPS_QEMU_LINUX_v2.6.32\rootfs.ext2 -append "root=/dev/hda rw ip=192.168.10.2" -

net nic -net tap,ifname=openvpn

Where:

-net nic will create a virtual NIC

-net tap,ifname=openvpn will ensure that TAP interface is connected to the openvpn TAP adapter installed

on the host

Note in our example above we have assigned 192.168.10.2 as the IP address of the virtual Linux machine
running on the QEMU simulator. The above invocation will also work for Stop-mode debugging as outlined in the
previous section.

Copy and Paste Warning! Do not copy and paste the above into PathFinder-XD; it will not work due to PDF
issues. The above invocation line can be copied and pasted from the README.TXT supplied with PathFinder-XD.

4.3.2 Sample Run-mode Linux Debugging Session
This section demonstrates Linux Run-mode Process Debugging using PathFinder-XD and the QEMU simulator
running v2.6.32 of the Linux Kernel. The example will demonstrate debugging of a Process and a Module (that
contains functions called from the Process). As before we have to prepare our kernel for debug, download it to
the simulator, execute it and load the kernel symbols into PathFinder. See previous sections 4.1, 4.2.1.1 and
4.2.1.2. Once these steps are complete we are ready to begin debugging our Module and Process as follows:

Ashling Product Brief APB211
Page 24 of 35

4.3.2.1 Debugging the Module and Process

1. First we load the Module (using insmod) from our Linux shell as follows:

Figure 42. Loading the Module to be debugged

Note: do not attempt to load a module twice or debugging will not work correctly (use rmmod

chardev.ko if you need to remove or unload the module)

2. Now, we halt the kernel in PathFinder-XD and load the Module symbols from within the PathFinder-XD
Linux Modules window:

Figure 43. Loading the Module symbols

Ashling Product Brief APB211
Page 25 of 35

Ashling Product Brief APB211
Page 26 of 35

3. Notice how the File Browser now shows the Module and Kernel symbols:

Figure 44. File Browser showing Kernel and Module symbols

We can double-click on the Module to list the files and double-click on a source-file to show it in the

Source Window. In the below screen-shot we have opened the Module source-file (chardev.c) and set

a breakpoint at the function device_write which we wish to debug (i.e. this function located in the

Module is called from the the Process)

Figure 45. Setting a Breakpoint in the Module

4. Next, we resume execution of the Kernel in PathFinder-XD

Figure 46. Running the Kernel

and launch gdbserver on the simulator (i.e. in the Linux shell) specifying the Process we wish to debug

(ashtestapp). Notice how we tell ./gdbserver which port to listen on (1234)

Figure 47. Launching the Process

Ashling Product Brief APB211
Page 27 of 35

5. Now we need to Debug A Process in Run-mode using PathFinder-XD (the Kernel is now running) as
follows:

Figure 48. Debugging a Process in Run-mode

 We need to specify the Process:

Figure 49. Specifying the Process

 The location of the shared libraries:

Figure 50. Specifying the Share Library location

And finally, the connection mechanism (TCP in our example) and IP address of the simulator system
(which is running gdbserver):

Figure 51. Specifying the Connection mechanism

Ashling Product Brief APB211
Page 28 of 35

Now press Debug to start debugging the Process

Figure 52. Debugging a Process in Run-mode dialog

6. PathFinder-XD will now update as follows:

Ashling Product Brief APB211
Page 29 of 35

Figure 53. PathFinder-XD in Run-mode

If no source is shown then select the Edit Source Lookup Path… button

Figure 54. Edit Source Lookup Path

and specify your source-directory as shown below:

Figure 55. Edit File System Directory

Notice how:

 The Debug window show both the Kernel (Embedded Debugging) and Process (Run-mode
Debugging) status:

Figure 56. PathFinder-XD Debug Window showing Kernel and Process (Kernel Run-mode) status

 The File Browser shows the Module, Process and Kernel sources:

Ashling Product Brief APB211
Page 30 of 35

Figure 57. PathFinder-XD File Browser showing Module, Process and Kernel sources

 The Source window shows the source code for our Process from main()

Figure 58. Process Source

7. We can now debug our Process as normal with the Kernel running in the background. After running the
process, choose the options as seen in the figure below:

Ashling Product Brief APB211
Page 31 of 35

Figure 59. Running the process

This will invoke the functions with a breakpoint set and PathFinder-XD’s Debug window will update as follows:

Figure 60. PathFinder-XD Debug Window showing the Kernel halted

Notice how the Kernel is now shown as halted (i.e. PathFinder-XD has automatically switched from run-mode to
stop-mode as the kernel is halted due to the breakpoint in the Module). This demonstrates how PathFinder-XD
easily switches between stop-mode and run-mode within the same debug session.

4.3.2.2 Debugging multi-threaded applications
Multi-threaded applications are supported in run-mode debugging only. All the application threads and the
associated Call Stack for each thread are listed. In addition, it is possible to set thread specific breakpoints.

To debug a multi-threaded application in run-mode, complete the following steps:

1. Launch gdbserver from the simulator (i.e. in the Linux shell) specifying the application we wish to debug

(threadtestapp).

Ashling Product Brief APB211
Page 32 of 35

Figure 61. Launching multi-threaded Process

2. Now we need to Debug A Process in Run-mode using PathFinder-XD (the Kernel is now running) as

follows:

Figure 62. Debugging a Process in Run-mode

3. Select the application (Process) to debug

4. Choose the location of shared libraries:

Figure 63. Specifying the Share Library location

5. And finally, the connection mechanism (TCP in our example) and IP address of the simulator (which is

running gdbserver):

Figure 64. Specifying the Connection mechanism

6. Now press Debug to start debugging the Process

7. The program will now run to the main() function.

Ashling Product Brief APB211
Page 33 of 35

Figure 65. Program runs to main()

8. Set a breakpoint in threadfn() and run to that point, the Debug view updates as follows:

Figure 66. Multi-threaded Debug View

Notice how the threads are listed and the call stack for each thread is shown in the Debug view. While clicking
on each thread context, all PathFinder-XD windows will update accordingly (i.e. thread specific).

Ashling Product Brief APB211
Page 34 of 35

To set a thread specific breakpoint:

 Set a breakpoint in a location by double clicking on the ruler.

 Right click the on the breakpoint in the ruler and choose Breakpoint Properties

Figure 67. Selecting Breakpoint Properties

 And in the filtering section, check the threads you wish to associate with the breakpoint.

56

Figure 68. Breakpoint Properties Dialog

 Click OK to set the breakpoint

Ashling Product Brief APB211
Page 35 of 35

4.3.2.3 Debugging more than one application at the same time
To debug more than one application or process at a time, you must launch a separate gdbserver for each

process. Use separate port number for each GDB server and use the “&” symbol at the end of the command.

Each gdbserver process will start in the background as shown in screenshot.

Figure 69. Launching Multiple Processes

You can now connect to each process via the Debug A Process in Run-mode menu. The Debug View will show
each process as follows:

Figure 70. Debugging Multiple Processes

These examples show the power of PathFinder-XD’s Embedded Linux support, in particular, the ability to debug
Processes whilst the Kernel is running (Run-mode) and to debug the interaction between Processes and the
Kernel (including Kernel modules). We hope you like it! Please send your feedback to
hugh.okeeffe@nestgroup.net

Doc: APB211-PF-XD_MIPS_SIM, Hugh O’Keeffe and Suresh PC, Ashling Microsystems

