Ashling Product Brief APB207
v.1.0.6, 10™ January 2013

PathFinder-XD for MIPS™ Powered Devices

Z7 Debug - CAMIPS_ROUTER_LINUX_v2.6.32\src\linux-2.6.32.10\arch\mips\kemnel\genex.S - PathFinder-XD for MIPS
File Edit Linux Target Run Window Help

B FYR O

%% Debug 22 i g = | DR | i | @ 7 = 0| % Breakpoints 32 | [Memory| i1# Rec
[] Ashling Opella-XD (MIP532-24K]) [PathFinder-XD Embedded Debugging] V| 4o chardev.c [line: 84]
8 vrnlinu

o Thread/Core [0] (Suspended : Signal : SIGTRAP: Trace/breakpoint trap)
= rdk_wait() at genex.5:147 0:x800625c0
= cpu_idle() at process.c:68 0:800642b8
= start_kernel() at main.c:687 0x802d4a48

= 0x800024ac
g gdb
1S genex.S 2 | Tl chardev.c &l threadtestapp.c TE| ashtestapp.c = O || 9= variables = Disassembly &3
: o 80@625bc: wait
jr ra 147 jr ra
END(rak_wait) » §88625c@: | Jjr ra
B889625c4: nop
.macro BUILD_ROLLBACK_PROLOGUE handler 8886258 nop
FEXPORT (rollback_\handler) 888625cc: nop
.set push 800625de: nop
.set noat 800625d4: nop
MFCa k@, CP@_EPC 888625d8: nop
PTR_LA ki1, rd4k wait 8@@625dc: nop
ori ke, exif /* 32 byte rollback region */ 165 BUILD_ROLLBACK_PROL{
xori ke, exif rollback_handle_int
bne ke, k1, of 80862528 mfc@ ké,c@ _epc
MTCe k@, CPe_EPC 88862524 : lui ki1,@x3@86
Figure 1. PathFinder-XD for MIPS™

Contents

1. Introduction

2. Installation

2.1 Windows™ Installation
22 Linux Installation
3. Using PathFinder-XD with the Opella-XD Debug Probe

3.1 Opella-XD USB Driver Installation

3.11 Windows™ USB Driver Installation

3.1.2 Linux x86 USB Driver Installation
3.2 Debugging with PathFinder-XD

3.21 Connecting Opella-XD to the Target

3.2.2 Using PathFinder
Embedded Linux Debugging with PathFinder-XD and Opella-XD
4.1 Hardware Setup

411 Upgrading RouterStation Pro flash

4.1.2 RouterStation Pro Hardware Setup for Embedded Linux debugging
4.2 Preparing for debugging

421 Building with debug symbols

4.2.2 Compiler optimisations

423 On-demand paging (for stop-mode debugging only)
4.3 Stop-mode Debugging

4.3.1 Sample Stop-mode Linux Debugging Session

4.3.2 Run-mode Debugging

Ashling Product Brief APB207
PathFinder-XD for MIPS™ Powered Devices
Page 1 of 38

NP PRPROWWWWNDNDDNDN

1. Introduction

This Ashling Product Brief introduces Ashling’'s PathFinder-XD for MIPS™ Debugger. PathFinder-XD is a
C/C++/Assembly debugger based on the Eclipse framework and supports debugging using the QEMU software
simulator (www.gemu.org) or the Ashling Opella-XD Debug Probe connected to MIPS™ powered target
hardware.

PathFinder-XD supports both “bare-metal” (no target operating system) and Embedded Linux based debugging.
This application note introduces PathFinder-XD and covers:

e PathFinder-XD installation

e Using PathFinder-XD with the Opella-XD Debug Probe

e Embedded Linux Debugging with PathFinder-XD and Opella-XD

The last two sections use the Ubiquiti Networks RouterStation Pro (powered by an Atheros AR7161 MIPS24K
based SoC) as the target system. This can be purchased from MIPS for approximately $150 dollars. See here for
details: http://www.mips.com/products/development-kits/linux-starter-kit/

For details on using PathFinder-XD with the QEMU simulator Please refer to the separate document APB211
which is supplied with PathFinder-XD and also available from the Ashling website at
http://www.ashling.com/images/stories/pdfs/technicalarticles/APB211-PF-XD_MIPS_SIM.PDF

2. Installation

PathFinder-XD can be hosted under Windows™ or x86 based Linux and installation requires full administration
privileges.

2.1 Windows™ Installation

Run the SETUP.EXE program from the Windows directory on the supplied CD (or download) and follow the on-
screen instructions.

2.2 Linux Installation
Run the ./SETUP32 (32-bit Linux) or ./SETUP64 (64-bit Linux) program from the supplied CD (or download)
and follow the on-screen instructions. PathFinder-XD for MIPS is tested on the following Linux platforms:

e Fedora 13/Ubuntu 10.04 LTS 32-bit/64-bit versions

Please note that the 64-bit Linux version of PathFinder-XD for MIPS requires the 32-bit library package ia32-
libs library, hence, make sure this is installed in your system. For example, to install on Ubuntu/Debian, issue
the following command:

> $sudo apt-get install i1ia32-1ibs

Ashling Product Brief APB207
Page 2 of 38

http://www.qemu.org/
http://www.mips.com/products/development-kits/linux-starter-kit/
http://www.ashling.com/images/stories/pdfs/technicalarticles/APB211-PF-XD_MIPS_SIM.PDF

3. Using PathFinder-XD with the Opella-XD Debug Probe

The Ashling Opella-XD as shown below is an entry-level Debug Probe for the MIPS family which connects to the
host PC via a USB2.0 interface.

Figure 2. The Ashling Opella-XD Debug Probe

Opella-XD uses the MIPS EJTAG core extension to provide a comprehensive set of debug features. PathFinder-
XD is Ashling's software interface for the Ashling Opella-XD.

3.1 Opella-XD USB Driver Installation

3.1.1 Windows™ USB Driver Installation

When you first connect Opella-XD to your PC you will get a New USB hardware found message and will be
prompted to install the appropriate USB drivers. The Ashling Opella-XD drivers are supplied on your Ashling CD
and installed in your installation directory. Direct the Windows Hardware Installation Wizard to your installation
directory so that it can locate the necessary drivers and complete the installation. Windows only needs to perform
this operation the first time you connect your Opella-XD to the PC. The Opella-XD USB driver is called
libusb0.sys (libusb0 x64.sys for 64-bit operating systems).

3.1.2 Linux x86 USB Driver Installation
Opella-XD uses the 1ibusb-0.1 driver (http://www.libusb.org/). By default, the driver is stored in /1ib directory
(in 32bit Ubuntu 12.04 it is located at /1ib/1i386-1inux-gnu directory)

Check for this as follows:
S 1s /lib/libusb*

If you see 1ibusb-0.1.s0.4.4.0 or higher then they are installed on your system and you can skip the next
section on libusb installation

Please note:
1. If your /1ib directory does not include a file titled 1ibusb.so (exact filename) then create a symlink as
follows:

Ssudo 1n -s /lib/libusb-0.1.s0.4.4.0 /lib/libusb.so

3.1.2.1 Ubuntu/Debian libusb installation
Install 1ibusb-0. 1 using the following command:
$ sudo apt-get install libusb-dev

If your /11ib directory does not include a file titled 1ibusb.so (exact filename) then create a symlink as follows:
$sudo 1n -s /lib/libusb-0.1.s0.4.4.0 /lib/libusb.so

3.1.2.2 Fedora libusb installation

Install libusb-0.1 using the following command running as super user:

yum install libusb

If your /lib directory does not include a file titled libusb.so (exact filename) then create a symlink as follows:

Ashling Product Brief APB207
Page 3 of 38

#1n -s /lib/libusb-0.1.s0.4.4.0 /lib/libusb.so

3.1.2.3 Using libusb on other installations
Download the latest 1ibusb-0.1 from http://www.libusb.org and install as follows:

$ tar zxf libusb-0.1.12.tar.gz (use appropriate version number)
$./configure --prefix=/usr

$ make

$ make install

If your /usr/1ib directory does not include a file titled 1ibusb.so (exact flename) then create a symlink as
follows:

$ln -s /usr/lib/libusb-0.1.s0.4.4.0 /usr/lib/libusb.so

3.1.2.4 Setting permissions

1.
2.

3.

3.2

Ensure that Opella-XD is connected to the PC, connected to the target and that the target is powered
To ensure the current SUSER has access to the Opella-XD device we recommend using the Linux utility udev
(requires kernel 2.6 or later).
Ensure udev is installed and running on your system by checking for the udev daemon process (udevd) e.g.:
$ ps —aef | grep udev
Create an udev rules file to uniquely identify the Opella-XD device and set permissions as required by
owner/ groups. An example udev file is supplied (60-ashling.rules) which identifies Opella-XD device
(by Ashling’s USB product ID and Vendor ID).
The rules file mustthen be copied into the rules directory (requires root permission) e.g.:
$ sudo cp ./60-ashling.rules /etc/udev/rules.d

Debugging with PathFinder-XD

In this section we will look at using PathFinder-XD and Opella-XD with an Ubiquiti Networks RouterStation Pro
board which uses the Atheros AR7161 MIPS24K powered device. Ensure your setup is configured as shown
below:

Host PC

)

. Power-over-ethernet
Majns
Cat-5 cable
(powers

Adapter
=
e
\
RouterStation

RS-232 POE PORT1 Pro)
(WAN) (LAN)

Opella-XD n Pro

EJTAG MIPS24K based target.

Figure 3. RouterStation Pro Debugging with Opella-XD

3.2.1 Connecting Opella-XD to the Target

Opella-XD is designed to connect to your PC via the USB cable and your target via the supplied EJTAG cable. Pin
1 of the Ashling EJTAG Cable Connector is clearly identified by a ¢+ on the connector; this should mate with pin 1
on your target’s EJTAG connector. Please note the following recommended target connection sequence:

1. Ensure your target is powered off.

2. Connect Opella-XD to your PC using the supplied USB cable and ensure Opella-XD’s Power LED is on.
3. Connect Opella-XD to your target using the supplied EJTAG cable.

4. Power up your target.

Ashling Product Brief APB207
Page 4 of 38

http://www.libusb.org/

3.2.2 Using PathFinder

PathFinder-XD
for MIPS

1. To get started, run PathFinder-XD . If this is your first-time running then you will be prompted to
specify your Workspace (default directory for projects etc). Accept the default which is located in PathFinder-
XD’s installation directory.

2. In PathFinder-XD, create a New Target Configuration via the Target menu
Bun Window Help
Eo‘;‘f Mew Target Configuration

§# Flash

Figure 4. Target Configuration

—

and select the Debug using Debug Probe option as shown below

E New Connection l B S
Select Remote System Type
Please select the system type of the remote systemn to connect. :&
Systemn type:

(= Ashling Debugging
@' Debug using Debug Probe
-t Debug using Simulator (QEMU)

2 -
C) < Back Mesxt = Finish

Figure 5. Debug using Debug Probe

Ashling Product Brief APB207
Page 5 of 38

3. Click Next and we can now configure our Opella-XD settings as shown below:

H Target configuration l (S

Probe selection

Specify the debug probe

Ashling debug probe configuration

Probe type ’Opella-XD -

Serial number use first found
USB

Configure ethernet

lf?:' ’ < Back ” MNext » | [FEinish] ’ Cancel

Figure 6. Probe selection

Settings include:
e Probe type: The actual Ashling Debug Probe Type to use as the target connection. Select
Opella-XD
e Serial number: The serial number of the Debug Probe to use. Specify the serial number or use
first found and click on Next

Ashling Product Brief APB207
Page 6 of 38

%% Target configuration |. =l iz-]

Debug probe configuration

Configure the debug probe

Device selection

MIPS device | MIP532 24K Core -

JTAG frequency 30MHz ~ Initial target byte order

Additional settings

User register settings file Browse...

Disable interrupts during single step Enable DMA mode

Single step using software breakpoint Halt counter in debug mode

Reset settings
@) Issue no reset on connection

Issue EITAGBOOT on connection

Issue hard reset and wait 4096 ms before entering debug mode

Multi-core settings

Cores on scan chain |1 »| Connectto |[TAP-0 -

TAP number DMA core IR width Bypass code
TAP-0 00000005 0000001F
Enable multi-core support Enable non-stop mode
P]
'\,?/' ‘&, Mext > [Finish] | Cancel

Figure 7. Debug probe configuration

The Debug probe configuration settings include:

MIPS device: specifies the MIPS device type you wish to debug. In this example, Broadcom
BMIPS5000 is selected.

JTAG frequency: specifies the JTAG TCK frequency to be used for communicating with the
EJTAG interface on your MIPS device.

Initial target byte order: allows you to specify the memory Endianess of your target system.
User register settings file: group allows you to initialise other registers or memory locations on
PathFinder-XD invocation and after reset. The Browse... button allows these register values to
be loaded from a simple text file. The text file format is:

Name Size Address Value

(all values are in HEX). For example, the following text file initialises the RO, R1, R2 and R3
registers:

RO 0x00000004 0xb800380c 0x18000000

R1 0x00000004 0xb8003808 0x00000006

R2 0x00000004 0xb8004018 0x00000800

R3 0x00000004 0xb800401c 0x0000000c

Disable interrupts during single step: allows you to disable interrupts when single stepping at
assembly level (MIPS instruction level). When checked, PathFinder-XD automatically disables
interrupts prior to an assembly level single step and re-enables them after the single step is
complete.

Enable DMA Mode: enables DMA mode for high-speed transfer between the debug probe and
your target. DMA Mode is only available on systems with EJTAG DMA support.

Single step using software breakpoint: allows you to specify that PathFinder-XD should use
software breakpoints for single-stepping (i.e. PathFinder-XD should not use the EJTAG hardware
based single-step command).

Halt counters in debug mode: allows you tell PathFinder-XD to halt the MIPS Count register(s)
(via writing to the Configuration register) whenever your program is halted. There is a slight delay
between your program halting and the write to the Configuration register. Note that the Registers
window always shows your application values for the Configuration register.

Issue no reset on connection: will ensure no hardware reset is issued when you connect to
your target (note that this feature requires updated Opella-XD firmware (v1.1.1 or later) which is
supplied with PathFinder-XD v1.0.6 or later).

Ashling Product Brief APB207
Page 7 of 38

e Issue EJTAGBOOT on connection: will issue a hardware reset and halt the target at the reset
location.

e Issue hard reset and wait ‘N’ ms before entering debug mode: will issue a hardware reset
and wait the specified number of ms before entering debug mode. This mode is also known as
NORMALBOOT.

e Multi-core: allows you to select the core you wish to debug for multi-core devices.

The settings shown are suitable for an Ubiquiti RouterStation Pro target board. Click Finish when done.

PathFinder-XD will now create a new Target Debugger setting in its Remote Systems Window as shown

below:
4 Remote Systems &2 B & | | - v =4

4 @' Ashling Opella-XD (MIP532-24K)
x Target Debugger

Figure 8. Remote Systems Window

Right-click on Target Debugger and click Connect to invoke the Opella-XD target connection. Once
invoked, the Remote Systems window will update as follows:

ﬂﬁ Remote Systems &3 Er-}"' & | - = =08

4 [Ashling Opella-XD (MIPS32-24K)
4 3§ Target Debugger
[MIPS32-24K

Figure 9. Remote Systems Window showing target connection

We can now download a program to the target by right-clicking over mips32-24k and selecting Download
and Launch as follows:

1H Remote Systems £ B 2 | = R
4 [Ashling Opella-XD (MIPS32-24K) i
4 ¥ Target Debugger

@ MIPSS'I A
GoTo 3
21 Refresh
Rename... F2
Delete... Delete

@ Download And Launch...
Reset K

Figure 10. Download and launch

Ashling Product Brief APB207
Page 8 of 38

¥ Ashling Opella-XD (MIPS32-24K) 25

Modify attributes and launch ,,

Mame: Ashling Opella-XD (MIP532-24K)

|=| Main ﬁﬁ Debugger EV Source

Download

ELF (binary) path C:\Program Files\Ashling\PathFinder-XDforMIPS\examples\BE\UnCached\Debug-BE\ UnCached_BE.elf
Load Options

Symbols only
@ Program and symbols

Load (program and symbaols) and verify (program)

Use fast downlead (requires 512 bytes of RAM)

05 Awareness

Enable QS debugging | Linux

| Apply | | Revert |

':6‘:' | Debug | | Close |

Figure 11. Specifying Target Program to Download

Specify the program to use (ELF (binary) path) and press Debug to download to the target board. Note:

PathFinder-XD supports ELF format files which should be compiled/linked with debug information. For
example, when using the GNU tool-chain add the compiler gcc switch “-g” (generate debug symbols)
when compiling all files you wish to be able to debug. Compiler optimisations should not be used as they
can cause misalignment between the generated symbolic information and the actual generated machine
code thus causing problems when debugging.

When debugging existing flash based code you should select Symbols only. This ensures no code is
downloaded to your target system (it is already there in flash) and that PathFinder-XD just extracts the
source-file and symbol information from the specified ELF file.

When downloading (program and symbols) you can verify that target memory matches the original ELF
file code contents by choosing the Load (program and symbols) and verify (program) option, however,
note that this option increases the overall time due to the verification step.

Use fast download... will improve your overall program download time, however, it requires that
PathFinder-XD download and use a small 512 byte helper-routine to target RAM at the address specified.
Make sure you chose a suitable 512 byte RAM location that is not used by your application as
PathFinder-XD does not preserve contents.

PathFinder-XD includes a suitable program (C:\Program Files\Ashling\PathFinder-
XDforMIPS\examples\BE\UnCached\Debug-BE\UnCached BE.elf) for running on MIPS32 4Kec or 24K
core based targets (including the RouterStation Pro). Select this, Program and symbols and press Debug

6. PathFinder-XD will now download the program and update its Windows as follows allowing you to start your
Debug session:

Ashling Product Brief APB207
Page 9 of 38

2 Debug - CAProgram Files\Ashling\PathFinder- XDFOrMIPS\examples\ BEWUnCachedsreistartup S - PathFinderXDfor Mips I T T oo o0 e

File Edit Linux Target Run Window Help

@ FeW T = [Fbehug]
#5 Debug i3 =N [i% | @ ¥ = O/ % Breakpoints 52 | [J Memory 3 Registers| &' Expressions w| @& =0

[5] Ashling Opella-XD (MIP532-24K) [PathFinder-XD Embedded Debugging]
8 UnCached_BE.ef
o Thiead/Core [0] (Suspended : User Request]
= _start() at startup.5:25 0xa0000818
s gdb -

8] startup 3 = 1/ t4- Variables % | Z¥ Disassembly <t | e st ¥ =08
Initialises caches I
Initialises the TLB if present

Name Type Value

i

Version 1.8 12th July 2883
#include "Defs.h”

.set noreorder

LEAF(_start)
// 1. Initialise CPU registers
> or v, zero, zero
or vl,zero, zero
or al,zero, zero
or al,zero, zero
or a2,zero, zero
or a3,zero, zero
or t@,zero, zero
or t1,zero, zero
or t2,zero, zero
or t3.zero. zero

) ‘

2 Remote Systems 52 B 2] | B ¥ = 0|/ E console 22 | Gu 6B | BB |[ENE) 2 B~ 5~ = O File Browser 2 $mEo=0o

[Ashling Opella-XD (MIPS32-24K) Ashling Opella-XD (MIP532-24K) [PathFinder-XD Embedded Debugging] gdb

% Target Debugger The target is assumed to be big endian -
B mips3z-24¢ #5 UnCached_BE.elf

type filter text

4 »

0° Writable Smart Insert 17: Current Core 224K Manufacturer :MIPS Endianess :Big

Figure 12. PathFinder-XD after program download

7. You can now control execution (start, stop, step etc.) using the Debug bar:
%5 Debug 2 (= i If}% - i 3 Y =0

where the buttons are as follows:

e

" stop/Halt
F, @ Step Into, Over and Return (Out)

—
Terminate (this button actually terminates the debug session meaning we have to Download and

Launch again)
Figure 13. Execution Control

When setting/toggling breakpoints in the Source and Disassembly Windows, make sure the mouse pointer is
hovering over the left-most column (known as the ruler) of the Window as shown below:
) display.c 1 main.c 3

int main(wvoid)

| unzigned int iEax
ﬁ@ char cCommar
data struct =sData:

Figure 14. Setting a breakpoint

8. To watch a variable or expression, select it using the mouse and Add Watch Expression via the right-mouse
button menu as show below:

Ashling Product Brief APB207
Page 10 of 38

/% Display the message */

strepy (Eﬂ - T

d ClearDispla

Show In Alt+Shift+y
Cut Cirl+¥
e Systems &3
Copy Ctrl+C
& & Paste Crl+v i
ishling Opella-xD (MII L
shing OpellaD (MI| -y Ly o Cirl+1
‘ Target Debugger s ,
B mips32-24¢ ouree
Search Text 4
=] Run to Line Cirl+R

3. Move To Line
b, Resume At Line
Add Watch Expression. ..

Figure 15. Adding a Watch Expression
()= Variables |84 Expres... &3 | ©g Breakp... | M4 Registers | [&] Periphe... | [
)k [

x;y "szDisplay™ = Oxa0004050 "Writing to B completed.’

Figure 16. Expression window showing watched expression

You can also quickly watch an expression by hovering the mouse pointer over it as shown below:
atrcat (2zlocalString, "failed

/#% Display the message =/
stropy (ENEHEY, SzLocalString) !

|szDisplay = "Writing to B completed.}

#a)

volid ClearDisplay (void)

Figure 17. Quick watch via mouse hover

Ashling Product Brief APB207
Page 11 of 38

Window | Help

9. PathFinder-XD supports both a Console and Translation Lookaside Buffer Windows (or Views) which can be
opened from the Window menu:

MNew Window
Mew Editor T = = | i | '{%} > =0ae,
Open Perspective * lgging]
Show View b | ©5 Breakpoints Alt+5hift+Q, B
Save Perspective As... = Cache
Reset Perspective... E Console Alt+Shift+ 0, €
Close Perspective B CPUInfo
Close All Perspectives ﬁ Debug
== Disassembly
Mavigation 3 &f Expressions
] Refresh Debug Views { File Browser
Preferences B LinuxModules
____________________________ =1 Linux Process
0 Memory
[Memory Browser
#%% Peripheral Registers
____________________________ il Registers
Jﬁ Remote Systerns
SERemmE [0 Scratchpad RAM
ms TLB
gisters (<= Variables Alt+Shift+Q, V
L= Other... Alt+Shift+(Q, Q
. ZEro

Figure 18. PathFinder-XD Views

Console.

handy quick-reference card see here: http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

&l consale 32

info reg

| Zero
RO 00000000
td
00000000
=0
00000063
t8
81082520
sr
11002401
far
00000000

RE

Ela

RZ24

Allows you to enter debug commands and view their output. The GNU GDB syntax is fully
supported. See here for details: http://sourceware.org/gdb/current/onlinedocs/gdb/index.html

or for a

at
00000000
tl
00000000
51
83dffee0
t3
2abcl43c
1o
00000000
fir
00000000

w0
83dffeel
tZ
83dffee0
52
Tfc34f4c
k0
TEc34f30
hi
00000000

00000063

fEfFfFFFfS

83el7f10

83el7fel

004112a0

Eepl|l @ E[EE #B-r5-°8

Ashling Opella-¥D (MIPS32-24K) [PathFinder-XD Embedded Debugging] C:'\Program Files\Ashling\PathFinder -XDforMIPS G

vl ai
g3dffeel
t4
00000000
=54
00000001
oE
83el16000
cause

50808420

t3

=3

k1l

bad

S
al az
Tfc34f4c 00000063 83¢
TS tE
00000000 01312400 0O
55 56
00400clc 004333d8 10(
ap =8
83elT7eald Tfc34f30 B0
jals I
c00101%c

Figure 19. PathFinder-XD Console showing the output of the info reg command

For example, to dump 16 words of memory in hex format from 0xA0004200 enter the examine command

as follows:
x /lewx 0xA0004200
0xa0004200: 0x00000000 0x00000000 0x74697257 0x20676e69
0xa0004210: 0x41206f74 0x6£f632020 0x656c706d 0x2e646574
0xa0004220: 0x00000000 0xal0004228 0x00000004 0xal004238
0xa0004230: 0x00000000 0Ox00000000 0x00000000 0Ox0O0000O0O0O

Ashling Product Brief APB207

Page 12 of 38

http://sourceware.org/gdb/current/onlinedocs/gdb/index.html
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Console commands can also be stored in a text file (GDB script file) and executed from PathFinder-XD’s
Run menu.

Ashling Product Brief APB207
Page 13 of 38

o Translation Lookaside Buffer shows the contents of Translation Lookaside Buffer (only
available for MIPS devices with EJTAG v2.6 or higher). Right-mouse menu options allow to
conveniently setup the TLB to sensible defaults (i.e. perform no mappings)) and edit entries.
Note: this Window does not work with the QEMU simulator.

|- File Browser | me Translation Lookaside Buffer &3 wp =
Index PS5 VPN G ASID PFM1 C1 D1 V1 PFM2 c2 D2 V2
0=00 4KE Ox404 N Ox06 0x1123 0x3 M ¥ 0x1129 0x3 M ¥
0x01 4KE Ox2AACE M Ox1F 0x0 0x0 M M Ox2F59 0x3 ' Y
Ox02 4KE Ox2AB70 M Ox 1B Ox1132 Ox3 M ¥ Ox0 Ox0 M M
0x03 4KE Ox2AB14 N Ox1F 0x 10ED 0x3 M ¥ 0x 10EE 0x3 M ¥
0x04 4KE Ox2AB7% M Ox1F 0x1115 0x3 M Y 0x1116 0x3 M Y
Ox05 4KB Ox410 M Ox1F Ox0 0x0 M M Ox2F47 Ox3 f ¥
0x07 4KB Ox2ACS0 N Refresh ¥ 0x0 0kl N M
Ox08 4KE Ow2AC32 M Initiglize TLE to safe defaults | ¥ 0x11DA a3 M ¥
0x09 4KE Ox7FAIL0 N Edit this entry ! M 0x33C1 0x3 Y ¥
Ox0A 4KE Ox2AAAE M | Y 0x10B3 0x3 M Y
Ox0B 4KB 0Ox2ABD3 M 0x06 0x11C8 Ox3 M ¥ 0x11C9 Ox3 M ¥
0x0C 4KE Ox2AABE4 N Ox1F 0x10B3 0x3 M ¥ 0x10B% 0x3 M ¥
0x0D 4KE Ox403 M Ox0a6 Ox112C 0x3 M Y 0x0 0x0 M M
Ox0E 4KE Ox2ACI0 M Ox0E 0x1143 Ox3 M ¥ Ox1144 Ox3 M ¥
Ox0F 4KE Ox2ACCC N Ox06 Ox10F2 0x3 M ¥ 0x10E0 0x3 Y ¥
[aCPR Tal A VD Ma-TTA ADN Kl M MaedmDA [PPS=] Kl v [SEPR al=1 = [PR L] v

Figure 20. PathFinder-XD TLB Window

10. Breakpoints can also be set via the Run|Breakpoint Configuration dialog. This allows software (RAM) and
hardware (RAM/ROM) based breakpoints to be set. Advanced hardware breakpoints (including data access
and conditional breakpoints) are also supported

Breakpoint Details

Breakpoint Type |Hardware Data Breakpoint v

Ignore Count ox0

Instruction/Data Access Address
Start Address | ox00000000 | [Browse... |

Caondition {IF)

Advanced
Address Match

[] Address Mask
[IMatch ASID

Data Match

| W

[Imatch Data

Transaction Type
) Load () Store (¥ Don't Care

[o]qell

Figure 21. PathFinder-XD Breakpoint Configuration

Ashling Product Brief APB207
Page 14 of 38

11. Memory can be viewed via Window|Show View|Memory.

()= Variables | 5" Expressions | @ Breakpoints | 480 Registers | [Memory 2

Manitors ﬁ

‘{}:_l
[

Figure 22. PathFinder-XD Memory View
Add a Memory Monitor and specify the address you wish to view (0xA000-0000 in the below example).

[ﬂ Monitor Memory

Enter address or expression to monitor;

[p:::0000000 v

) LL\\)CIK

Figure 23. Adding a Memory Monitor

l [Cancel]

Monitors ol $¢ % | 0xA0000000 : OxAODD0DD0 <Hex> E7 | = New Renderings...

% 0xADDDDO00 | Address | O - 3 - 7 _8 - B
RO000000 00000011 [%_mangr:- EQOFFBD27
RO000010 1800B2AF 1400B1AF 1E004014
A0000020 O0ORAOO33C 20406324
R0000030 23104300 83100200 FFFF5024
R0000040 15000008 O0OR0113C 0000628C
RO0000S0 344024AF 3440228E 01004424
A0000060 2B105000 FS8FF4014 21187200
RO0000TO 00004224 05004010 01000324
ROOOOOE0 0000000C 40108424 01000324
0000090 304043R0 1COOBFSF 1800B28F

Figure 24. Memory Window showing contents at 0xA000-0000

Full point-and-click in-line editing is supported for writable target memory locations. Select New

Renderings to show memory as Hex, ASCII etc.
Memory Monitor: QxAQ000000 @ OxACD00000
Select rendering(s) to create:

ASCII

Hex Integer

Signed Integer
Unsigned Integer

ey

Figure 25. Selecting Memory Renderings

Ashling Product Brief APB207
Page 15 of 38

4. Embedded Linux Debugging with PathFinder-XD and Opella-XD

PathFinder-XD supports Embedded Linux Debugging for kernels based on v2.6 or later. Support works in two
modes:
e Stop-mode: Debugging is done via the on-chip debug interface (e.g. via Opella-XD) and the whole system
is halted (e.g. kernel and applications) whenever a breakpoint is taken.
e Run-mode: Debugging is done purely in software (i.e. no Opella-XD is required) via a target
serial/Ethernet interface and requires an application (GDB server) running on the target. In run-mode, the
kernel continues to run when an application breakpoint is taken.

Stop-mode debugging is useful for bringing up the kernel as it only requires a functional on-chip debug interface
and allows debug from reset. Stop-mode can also be used for process debugging, however, the kernel/interrupts
etc. will not continue to run when halted (unlike run-mode). When stop-mode debugging a process, PathFinder-
XD automatically scans the kernel MMU mapping for that process and sets up the MIPS core TLB to allow debug
access to the process’s memory area. Run-mode debugging requires that the kernel is up and running and allows
non-intrusive debug of a process (i.e. the kernel will continue to run even when a process is halted). Run-mode
also supports thread-aware breakpoints and simultaneous debug of multiple processes.

41 Hardware Setup

This section demonstrates Linux Kernel Debugging using PathFinder-XD and Opella-XD connected to an Ubiquiti
Networks RouterStation Pro (powered by an Atheros AR7161 MIPS24K based SoC) target running OpenWRT
v10.03 (known as Backfire and based on the Linux Kernel v2.6.32). See http://wiki.openwrt.org/ for more details
on OpenWRT.

Ashling provide the associated OpenWRT v10.03 Linux Kernel sources files for download at
http://www.ashling.com/support/MIPS/RouterStationPro/MIPS ROUTER LINUX v2.6.32.ZIP
(dated: 30/4/2011 or later) and these should be installed by unzipping to your local hard-disk (ensure you
preserve the directory structure as present in the ZIP file). These sources are needed for source-level debug of
the kernel and they also include some examples that demonstrate other PathFinder-XD features.

4.1.1 Upgrading RouterStation Pro flash

In order to allow kernel debugging, it is important that your board is programmed with the v10.03 debug flash
image provided (openwrt-ar71lxx-ubnt-rspro-squashfs-factory.bin is included in the above .ZIP file
in \MIPS ROUTER LINUX v2.6.32).

Power-over-ethernet

Mai
e Adapter

ey
=

=
TS

ethernet connection (to board at
192.168.1.20)

t

Cat-5 cable
(powers
Reset (hold RouterStation

Host PC

during power-up) Pro and
provides

POE PORT1 WAN
(WAN) (LAN) connection)

)

RS-232
(115,200:8bit:1stop:no parity:no flow)

s ST s
Ubiquiti RouterStation Pro
MIPS24K based target.

EJTAG J4

Figure 26. RouterStation Pro flash update

1. Connect as shown in the above figure making sure your Host PC is connected to WAN port on the board (via
the P.O.E. adapter which also powers the board). You will need a terminal program (e.g. putty) running on
your host PC to show the target’s Linux shell (and status messages during boot including the OpenWRT
version). The terminal should be configured as per the RS-232 settings shown above.

Ashling Product Brief APB207
Page 16 of 38

http://wiki.openwrt.org/
http://www.ashling.com/support/MIPS/RouterStationPro/MIPS_ROUTER_LINUX_v2.6.32.ZIP

2. Power-off your board.

3. Hold-down Reset and power-on the board. The board should then boot and after a few seconds show
TFTPD: waiting for connection... in the terminal indicating that the board is ready to receive an
updated flash image at ip address 192.168.1.20.

4. You will need the command-line t£tp utility to flash the board which may not be installed by default on some
Windows hosts (you can install it via the Control Panel as an optional Windows feature). For example, for
Windows users issue the following command:

>tftp -1 192.168.1.20 put openwrt-ar7lxx-ubnt-rspro-squashfs-factory.bin
and for Linux:

>tftp 192.168.1.20 -m binary -c put openwrt-ar7lxx-ubnt-rspro-squashfs-

factory.bin

5. When programming is completed, you will see a display like the following:

new T23E bus registered, : gned bus number 2

irg 14, io mem jaoao
#1 chosen from 1 choice
7 hub found
detected
End of filesvystem warker found at 0x0
done.

end marker... done.

mini fo: using storage directory: foverlay

Figure 27. RouterStation Pro flash update completion message in shell

Press enter to return to the command-prompt and cycle power on the board to reset and run the new flash
contents.

6. See http://wiki.openwrt.org/toh/ubiquiti/routerstation.pro for more details on how to upgrade/flash the board if
necessary.

4.1.2 RouterStation Pro Hardware Setup for Embedded Linux debugging
For Embedded Linux debugging, setup your hardware as shown below.

Power-over-ethernet

PathFinder-XD runs on the Mains Adapt
host PC and uses Opella-XD apter
for Stop-mode debugging e
(Kernel) and the Ethernet =
connection for Run-mode \

debugging (Processes). ethernet (for

)

The host contains the Host PC ryn-mode debug) to board at 192.168.1.1

original Linux kernel source- Cat-5

files required for source- connection

level debugging in (powers

PathFinder-XD. Boe porT1 RouterStation
(WAN) (LAN) PI’O)

Host also runs a Terminal
program (e.g. putty)

RS-ZQ

(115,200:8bit:1stop:no parity: no flow)

UsB

n Pro
MIPS24K based target.

Figure 28. Embedded Linux Demo setup

Ashling Product Brief APB207
Page 17 of 38

4.2 Preparing for debugging
This section is only necessary if you are building/using your own Kernel; the version supplied by Ashling includes
all of the following requirements.

4.2.1 Building with debug symbols

Your kernel, modules, processes, libraries, drivers etc. must be built with debug symbols as PathFinder-XD needs
to access global structures and variables etc. to support Linux debugging. Please note that debug symbols for
Linux kernel (vmlinux) are required to debug user-mode applications in stop-mode (to allow PathFinder-XD to
handle memory mapping which requires kernel symbols). Kernel symbols are not required for run-mode
debugging.

e For the kernel, run make menuconfig, select Kernel hacking, enable Kernel debugging and Compile the
kernel with debug and run make to rebuild the kernel with debug symbols.

e For non-kernel items, add the compiler gcc switch -g (which will generate debug symbols) to your
makefile and rebuild.

4.2.2 Compiler optimisations

Compiler optimisations should not be used as they can cause misalignment between the generated symbolic
information and the actual generated machine code thus causing problems with debugging. In particular, the flag
--ffunction-sections should not be used as it will create .text sections for every function causing problems
for PathFinder-XD. See here for more details: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html. To
remove these optimizations, change your makefile and rebuild e.g.:

Change arch/mips/Makefile

from:

cflags-y := --ffunction-sections (Line number 51 in Linux kernel 2.6.27)
to:

#icflags-y := --ffunction-sections

4.2.3 On-demand paging (for stop-mode debugging only)

Linux uses “on-demand paging” meaning that a process’s (and its dependant libraries) code, data and stack are
not actually paged into memory until they are first used. This can cause problems when you wish to “stop-mode”
debug a process from its initialisation as it may not yet be present in memory. For example, you cannot set
software breakpoints which require patching of the software breakpoint instruction into the appropriate process’s
memory location until the actual associated process code page is in memory. Depending on the size of your
target's memory space and your memory management unit (MMU configuration), you may or may not have this
issue. If you do then Ashling provide a kernel patch that will force all of a process’s code, data and stack pages
into memory. This file is installed with PathFinder and is called ash load process pages.c. Installing the
patch requires that you modify some existing kernel files and rebuild; please refer to the file for full details. Note
that this patch is required only for stop-mode debugging.

4.3 Stop-mode Debugging
The following features are supported:
= Linux Kernel debugging:
o Debug modules built as part of the Kernel
= Linux dynamically loadable Modules/Driver debugging:
o List all inserted modules
o Debug an already inserted module
o Debuga module from init_module ()
= Linux process (application) and library debugging:
o List all running processes and threads
Debug a running process
Debug a process from main ()
Debug shared libraries

O O O

Ashling Product Brief APB207
Page 18 of 38

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

4.3.1 Sample Stop-mode Linux Debugging Session

This section demonstrates Linux Kernel Debugging using PathFinder-XD and Opella-XD connected to an Ubiquiti
RouterStation Pro target running v2.6.32 of the Linux Kernel. Make sure you hardware is configured as per 4.1.2
RouterStation Pro Hardware Setup for Embedded Linux debugging.

1. In PathFinder-XD, create a New Target Configuration via the Target menu

DforMIPS\examples\Mips 3 2-4kechsrd

ect MEGEN Linux Window Help

EE—"II Mew Target Configuration

i S T 5 o ea=
Figure 29. Target Configuration

and select the Debug using Debug Probe option as shown below

[2'-.! New Connection

Select Remote System Type

Please select the system type of the remote system to connect, :H:

System type:
‘ type filter text ‘

B (= Ashling Debugging
DEhugNsing Debug Probe
=B= Debug Using Simulator (QEMU)

@

Figure 30. Debug using Debug Probe

2. Click Next and we can now configure our Opella-XD settings as shown below:

7] Target configuration |z|®
Probe selection
Specify the debug probe

Ashling debug probe configuration
Probe type (Opella-xD v

Serial number | use first found ‘

Configure ethernet

@ [< Back][Mext = H Finish H Cancel

Figure 31. Probe selection

Ashling Product Brief APB207
Page 19 of 38

Settings include:

Probe type: The actual Ashling Debug Probe Type to use as the target connection. Select
Opella-XD

Serial number: The serial number of the Debug Probe to use. Specify the serial number or use
first found and click on Next

E Target configuration l =] iz-]

Debug probe configuration

Configure the debug probe

Device selection

MIPS device |MIPS32 24K Core A

JTAG frequency 30MHz ~ Initial target byte order

Additional settings

User register settings file Browse...

Disable interrupts during single step Enable DMA mode

Single step using software breakpoint Halt counter in debug mode

Reset settings
@) Issue no reset on connection
Issue EITAGBOOT on connection

Issue hard reset and wait 4096 ms before entering debug mode

Multi-core settings

Cores onscan chain (1 | Connectto |TAP-0 -

TAP number DMA core IR width Bypass code
TAP -0 00000005 0000001F
Enable multi-core support Enable non-stop mode

'@:’ < Back Mext > [Finish l | Cancel

Figure 32. Debug probe configuration

The Debug probe configuration settings include:

MIPS device: specifies the MIPS device type you wish to debug. In this example, Broadcom
BMIPS5000 is selected.

JTAG frequency: specifies the JTAG TCK frequency to be used for communicating with the
EJTAG interface on your MIPS device

Initial target byte order: allows you to specify the memory Endianess of your target system.
User register settings file: group allows you to initialise other registers or memory locations on
PathFinder-XD invocation and after reset. The Browse... button allows these register values to
be loaded from a simple text file. The text file format is:

Name Size Address Value

(all values are in HEX). For example, the following text file initialises the RO, R1, R2 and R3
registers:

RO 0x00000004 0xb800380c 0x18000000

R1 0x00000004 0xb8003808 0x00000006

R2 0x00000004 0xb8004018 0x00000800

R3 0x00000004 0xb800401lc 0x0000000c

Disable interrupts during single step: allows you to disable interrupts when single stepping at
assembly level (MIPS instruction level). When checked, PathFinder-XD automatically disables
interrupts prior to assembly level single step and re-enables them after the single step is
complete.

Enable DMA Mode: enables DMA mode for high-speed transfer between the debug probe and
your target. DMA Mode is only available on systems with EJTAG DMA support.

Single step using software breakpoint: allows you to specify that PathFinder-XD should use
software breakpoints for single-stepping (i.e. PathFinder-XD should not use the EJTAG hardware
based single-step command).

Ashling Product Brief APB207
Page 20 of 38

Halt counters in debug mode: allows you tell PathFinder-XD to halt the MIPS Count register(s)
(via writing to the Configuration register) whenever your program is halted. There is a slight delay
between your program halting and the write to the Configuration register. Note that the Registers
window always shows your application values for the Configuration register.

Issue no reset on connection: will ensure that no hardware reset is issued when you connect to
your target (note that this feature requires updated Opella-XD firmware (v1.1.1 or later) which is
supplied with PathFinder-XD v1.0.6 or later).

Issue EJTAGBOOT on connection: will issue a hardware reset and halt the target at the reset
location.

Issue hard reset and wait ‘N’ ms before entering debug mode: will issue a hardware reset
and wait the specified number of ms before entering debug mode. This mode is also known as
NORMALBOOT.

Multi-core: allows you to select the core you wish to debug for multi-core devices.

The settings shown are suitable for an Ubiquiti RouterStation Pro target board. Click Finish when done.

PathFinder-XD will now create a new Target Debugger setting in its Remote Systems Window as shown

below:

18 Remote Systems 53 =0
£ 8 - BB T
= B ashling Opella-XD (MIPS32-24K)
4

s

Figure 33. Remote Systems Window

Right-click on Target Debugger and click Connect to invoke the Opella-XD target connection. Once
invoked, the Remote Systems window will update as follows:

}_'E Remote Systems &3 =8

& & - BB T
= [B ashiing Cpella-xD (MIPS32-24€)
= % Target Debugger

Figure 34. Remote Systems Window showing target connection

We can now download a program to the target by right-clicking over mips32-24k and selecting Download
and Launch as follows:

}_'E Remote Systems 0 =0

& g ST
= [Ashling Opella-xD (MIP532-24K)
=B Target Debugger

GoTo r

| Refresh

ks

MEY B Download And Launch. .. for debug
o R |

Figure 35. Download and launch

Ashling Product Brief APB207
Page 21 of 38

4.3.1.1 Loading kernel symbol information to PathFinder-XD

First, enable Linux debugging via the Enable OS debugging check box (this ensures that PathFinder-XD will add
the Linux specific menu allowing you to perform Module and Process debugging). In this example, our Linux
kernel binary image and root file system is flashed on the RouterStation Pro board hence, we only need to select
Symbols only (for the kernel image) into PathFinder-XD to allow symbolic kernel debug.

Z? Ashling Opella-XD (MIP532-24K)

Meodify attributes and launch

Mame: Ashling Opella-XD (MIP532-24K)
[] Main| % Debugger t Source

Download

ELF (binary) path CA\MIPS_ROUTER_LINUX v2.6.32\vmlinux Browse...
Load Options

@ Symbols only
) Program and symbols

_ Lead (program and symbols) and verify (proegram)

Use fast download (requires 512 bytes of RAM)

05 Awareness

Enable 05 debugging

| Apply || Reven |

@ [

Debug l [Close]

Figure 36. Loading the kernel symbols

Select the Debugger tab and make sure that mips-1inux-gnu-gdb.exe is specified as the GDB debugger

E Ashling Opella-XD (MIP532-24K)

Modify attributes and launch

Mame: Ashling Opella-XD (MIP532-24K)
[Z] Main | %% Debugger E- Source
[C] Stop on startup at: | main
Debugger Options

Main

GDE debugger: C\Program Files\Ashling\PathFinder-XDforfIPS\GMUDebuggermips-linux-gnu-gdb.exe

GDE command file: .gdbinit

Figure 37. Specifying the correct GDB debugger

Select Debug and now execute the target (Run Lo) and the kernel will boot and show status messages
(including OpenWRT version) to your terminal window.

Ashling Product Brief APB207
Page 22 of 38

COM1 - PuTTY

controller
gned I number

hubh found

v1.15.3 (2011-03-13 16 I built-in shell
Enter 'help' for a list of built-in c

unknown)
hlua i B o

Figure 38. RouterStation Pro Linux shell

Once the kernel is booted, we can halt it within PathFinder-XD (by pressing —— Stop/Halt). PathFinder-XD then
updates as follows: _ - o -
[Q Debug - C:\MIPS_ROUTER_LIMUX_ w2.6. 32sreMlinux-2. 6. 32. 10harchimipsikerneligenex.S - PathFinder-XD for MIPS

File Edit Linux Target Run Window Help
4. es @f ;3 521 Debug
35 Debug 12 Ok T} TR i 7 = 0 9 greakpaints &1 | [Memory | 813 Registers | 5" Expressions =i
= [E] ashling Opella-<D (MIPS32-24K) [PathFinder-%D Embedded Debugging] | [:, Az
=]!f;.) wrmlinuz
=-of® Thread [1] (Suspended : User Request)
= rak_walt(} at genex.5:147 0%800625c0
= cpu_idle() at process.c:68 0x80064334
= start_kernel() at main.c:687 0x802d4a45
= 0x300024ac
p gdb
|5 genex.5 B2 = O || 9= yariables 52 | 2= Disassembly <1 T m|
nop ~ Mame Type Yalue
.set mips3
wait
/7 end of rollback region (the region size must be power of
.set pop
1:
jr rs
END (r4k_wait)
< >
-macro EBUILD_ROLLBACE PROLOGUE handler
FEXPORTtrDllback_\handlErj
.set push v
< *
EﬁRemmte Systems (- = O | B console 2 = O || 5 File Browser 52 =)
] — = | |Ashling Opella-xD (MIPS32-24K) [PathFinder-+%D Embedded Debugging] gdl + 3& wmlinus: - [mipsbe]
& B | BB || & & = S
= [shiing Opella-+D (MIPS32-24K) - ® BE | W | |F 8-
= * Target Debugger
B

Figure 39. PathFinder-XD after halting the kernel

Notice the following windows:

Ashling Product Brief APB207
Page 23 of 38

wrnlinu: - [mips/be]

l'_'| %\
@ ar?lw.c
[El dev-ap21-eth.c
@ EI dev-ap91-pci.c
@ @ dev-ap94-pai.c
@ @ dew-ar91 Jx-wmac. o
£ @ dev-dsa.c
(E2] @ dev-gpin-butkans,
(£ @ devices.c
|-

[FIE=q OO

b

Figure 40. File Browser window showing all kernel source-files

(5 File Browser BRI L L o % T O
Address Marre Size _
0x57074040 nf_nat_tftp 525
a7 00F0Co xk_comrnent Sil g
Oxa70sh100 *E_NOTRACK 624
Oxa7mea130 *k_mac 67
0xE7BE3170 ipkable_raw 736
Qxa7006150 nf_defrag_ipw4 742
Oxa7BELLED xk_skate g4
Oxa7BEQLED iptable_filker o4a
0x57071210 nf nak irc 596 bt

Figure 41. Linux Module window showing all currently loaded kernel modules (enabled via Linux menu)

Lﬁ File Browser Q Linux Maodules ﬁ Linux Process &2 — O

W S
Address PIC MDD Aslh 5
Qxa02C0E40 0 [swapper] 0
OxE7alsnnn 1 it Ox19 =
Nx87818488 2 [kthreadd] 0x0
OxE7518910 3 [ksoftirgd)n] 00
0xa75138093 4 [eventsfO] 0
QxE7519220 & [khelper] 0x0
0x87819FB3 & [asvnc/mgr] 0x0 h

Figure 42. Linux Process window showing all processes (enabled via Linux menu)

Full kernel source-level debug is now possible.

4.3.1.1.1 Debug a module from init_module ()

Use the Linux|Modules|Debug A Module From Initialisation menu to debug a module from

init module () entry point as follows:

[ﬂ Debug A Module From Initialisation

Maodule name | HAMIPS_ROUTER_LIMUE 2 6,32)srcimoduletestichardey ko

| [Brnwse...]

l

Debug

] [Cancel

]

Figure 43. Specifying the module to debug

Ashling Product Brief APB207

Page 24 of 38

it's

Once specified, you now need to insert the module via the console as follows:

[_!'J Insert the Module

Openllrt:~# insmoc

chardev: module license

Figure 44. Inserting (running) the module

PathFinder-XD then halts the module at init module () allowing module debug as shown below:
Ej Debug - C:AMIPS_ROUTER_LINUX 2. 6. 32\srcimoduletestichardev.c - PathFinden-XD for MIPS

File Edit Linux Target Run ‘Window Help
- - S & ¥ pebug |
ﬁ‘FDebug s "3 T i = T O % Breakpoints 52| [Memaory M4 Registers| S5 Expressions | T
= Ashling Opella-<0 {MIP532-24K) [PathFinder-%D Embedded Debugging] = | ® | [@ <é'==> =
.]{9 wmlinus
=g Thread [1] {Suspended : User Request)
= init_moduled) at chardey,c:242 0x67bf5350
= do_one_initcall{} at main,c:721 0xS0060555
= sys_ink_module) at module.c:2,612 Ox800a0164
= handle_sys() at scall3z-032,5:59 0xE0069004
= Oxdeded
M o
genex.s & chardev.c 52 = O | 9= variables 57 | 22 Disassembly +h ¥ =08
i ”~ Marme Type Valug
* Initialize the module - Register the character device (= ret_val int zvalue optimized out:
i
int init module (]
1
int ret_wval;
lli' *
* Fegister the character device [(atleast try)
w4 (>
ret_wal = register chrdev (MAJOR NUM, DEVICE NAME, &Fops):
printk (" nretval=s5din", ret_val);
b
18 Remote systems 52 = O || E corsole & = O | |5 File Browser | B8 Linux Modules &2 | 5] Linux Process| = O
& 8 S =T Ashling Opella-+D {MIP532-24K) [PathFinder-%D Embedded Debu Qé.z ..%’
: : — Wl DH||EE = B~ (=
= T = t i L1 f .
= %? ;hl.lrng Of;llabXD (MIPS32-24K) = L= T e e N
= @‘?Ige_ £ ”gg:r OxB7BF3E30 xt_TCPMSS 1952
mips32-24 0x87920690 gpio_buttons 2048
0x3707F7E0 iptable_nat 2440 |
nf_conntrack_tftp 2480 1
chardey |
nf_connkrack_irc 2603 |
OxB7913670 buttan_hatplug 2R56 - |
S

Figure 45. PathFinder-XD halted at init module () allowing module debug

PathFinder-XD’s File Browser will also update to show the source files associ_ated with the module:
,_j File Browser 23 g Linux Modules ﬁ Linux Process |

& @. chardes . ko - [mipsibe]
[+ f_& wrlin: - [mips/be]

Figure 46. File Browser window showing modules sources

Ashling Product Brief APB207
Page 25 of 38

And the Linux Modules window will now list the new module:

:__'F:FFile Browser E Linus Modules 57 | 5] Linux Process. — O

B S
Address Marne Size A
| Ox&7BF3630 xk_TCPMSS 1952
| 0579206890 gpio_buttons 2048
| DxE707F7EO iptable_nat 2440
[DxE70942E0 nf_conntrack_tftp 2480
B 0::57EFS790 chardey
| Ox570905E0 nf_conntrack_irc 2605 [
| Dx87913870 buttan_hotplug 2656 w |

Figure 47. Linux Modules window listing the new module
You can also view the internal module kernel structures via the right-mouse button menu as follows:

| File Browser | B Linux Modules 53 ﬁ Linux Process | O

R

: Sddress Marne Size *'\
| OxE7094280 nf_rconntrack_tftp 240

FEFS730

[DB?DQDSED nf conn Show Module Skruckure
| 0x87913870 buttor_ Load Module Symbal
SOTD plod e |
| 0x870SEBS0 nF_conm P Auko update v |
g Breakpoints Fj Mermorsy i Reqisters @Expressiuns & - B
W X R
Expression Tvpe Yalue k!
= w (struct module®)I0xS7EFS skruck module * Dxa7bfS730
)= state enum module_skate MODULE_STATE_COMIMG
@ E lisk skruck list_head 1.
[+ E narme char [60] DxE87bFE79C
|g'_" mkobj skruck module_kobjeck Ak
® modinfo_attrs struck module_attribute * OxB7a56c00
F ® version consk char * 0x0
® srcversion consk char * 0x0
[# ® holders_dir struck kobject * Dxa7b54e00
F m svms consk skruck kernel_swmbal # - 0x0
[+ ® cres consk long unsigned ink * 00
)= num_swyms unsigned ink 0
® W |p sktruck kernel_param * 00
=)= num_kp unsigned ink 0
()= nurm_gpl_svyms unsigned ink 0
* ® gpl_syms const skruck kernel_swymbaol * - 0x0
® gpl_cres consk long unsigned ink * (1] w

Figure 48. Viewing the internal kernel module structures
In addition, you can load module symbols for a module that is already loaded (Load Module Symbol menu option
in the right-mouse button menu)

Ashling Product Brief APB207
Page 26 of 38

4.3.1.1.2 Debugging a process from main ()

Use the Linux|Processes|Debug A Process From main () to debug a process from it's entry point as follows:
E Debug A Process From main()

Process name C:AMIPS_ROUTER_LINUX_v2.6.32\src\threadtestapp\threadtestapp

rootfs Directory CAMIPS_ROUTER_LINUX v2.6.32\rootfs

Shared library

Shared Library Path(s)

Debug] [Cancel

Figure 49. Debugging a process from main ()

rootfs Directory specifies where the root file-system (rootfs) resides in your host machine. This location is

needed for loading shared library symbols in PathFinder-XD. Once specified, you now need to run the process
from the console as follows:

E Run the Process ﬁ1

Mow run the process from Linux console

L

Press OK and PathFinder will run Linux allowing you to enter a console command as follows:

B COreadirest

Figure 50. Running the process

PathFinder-XD then halts the process atmain () function as shown below:
genex.S ‘| chardev.c | threadtestapp.c &2 =0
int main(void)
1
pthread t thrl, thr2;
ffchar thrl, thr2;
thread_data trl_data, tr2_data;
unsigned long main_count;

/f initialise thread data and create

strepy (trl data.msg,"In first thread™);

strepy (tr2_data.msg,"In second thread");
trl_data.cnt=tr2_data.cnt=main_count=1;

pthread_create(&thrl, NULL, threadfn, (void*)&trl_data);
pthread_create(&thr2, NULL, threadfn, (void*)&tr2 data);

m

// loop forever, servicing threads
while (1)

printf("In main [#@81X]\n",main_count+t);
usleep(5@aa);

/ never get here

pthread join({ thrl, NULL };

pthread_join(thr2, NULL };
4

Ashling Product Brief APB207
Page 27 of 38

Figure 51. PathFinder-XD halted at the process’s main () function

The File Browser window will update to show the process’s source-code.
Note: To exit the application, press Ctrl+C from the Linux console.

4.3.1.1.3 Debugging a running process
You can load the symbols for a running process via the Linux Process window. Right-click on the process and
select Load Process Symbol:

¥ Load Symbols for process threadtestapp

Ul

Process symbol file CAMIPS_ROUTER_LINUX v2.6.32\src\threadtestapphthreadtestapp | | Browse...

rootfs Directgr}r CAMIPS_ROUTER_LIMUX w2632\ rootfs Browse...

!

Shared library

Add

Shared Library Path(s)
Remowve

i

Load] | Cancel

Figure 52. Loading a process’s symbols

It is recommended that you use hardware breakpoints when debugging a running process (i.e. do not use
software breakpoints as the process may not be paged in at this point). Once the hardware breakpoint has been
taken the process is in memory, hence, you can use software breakpoints.

4.3.1.1.4 Library debugging
Debugging of libraries is handled seamlessly without any extra requirements/setup.

4.3.2 Run-mode Debugging

Run-mode debugging is done via a target Serial/Ethernet interface and requires an application (GDB server)
running on the target. In run-mode, the kernel continues to run when a process (application) breakpoint is taken.
Run-mode debugging requires that the kernel is up and running and allows non-intrusive debug of process (i.e.
the kernel will continue to run even when a process is halted).

4.3.21 Sample Run-mode Linux Debugging Session

This section demonstrates Linux Process Debugging using PathFinder-XD and Opella-XD connected to an
Ubiquiti RouterStation Pro target running v2.6.32 of the Linux Kernel. The example will demonstrate debugging of
a Process and a Module (that contains functions called from the Process). Kernel/Module level debugging is done
via the Opella-XD; Process debugging is done via an Ethernet connection to the target.

As before we have to prepare our kernel for debug, download it to the target, execute it and load the kernel
symbols into PathFinder. See previous sections. Once these steps are complete we are ready to begin debugging
our Module and Process as follows:

4.3.21.1 Copying the necessary files to the target

Ashling provide a precompiled version of the GNU gdbserver (v7.2 or later) to support run-mode debugging and
by default this is included in the root file-system provided by Ashling for debugging the RouterStation Pro board,
hence, no copying is necessary.

When debugging your own target, note that the gdbserver application is installed with PathFinder-XD in
PathFinder-XDforMIPS\target\linux\gdbserver and versions are supplied for big/little endian and
libc/uclibc target libraries.

Ashling Product Brief APB207
Page 28 of 38

4.3.2.1.2 Debugging the Module and Process

1.
Figure 53. Loading the Module to be debugged
Note: do not attempt to load a module twice or debugging will not work correctly (use rmmod
chardev.ko if you need to remove or unload the module)
2. Now, we halt the kernel in PathFinder-XD and load the Module symbols from within the PathFinder-XD
Linux Modules window:
.__"fFiIe Browser g Linux Modules &3 l:éh "?:J &
Address Mame L
QxE7IEESA0 gpio_buttons
Dx87079760 ipkable_nat
Qxa7097 260 nf_rconntrack_tFtp
Oxa7002790 chardey
Q87070 Show Module Skrockure
gxg;.i';% Load Module Symbol
nfﬂ?m ot Refresh w ||
. < : '%g Auto update i >
£21 Load Symbols Of A Module X
Module name {without ko) :
Module symbol fle | C:MIPS_ROUTER,_LINLX_v2.6.32srcimochletestichardev ko [eronse...]

Ok H Cancel]

Figure 54. Loading the Module symbols

3. Notice how the File Browser now shows the Module and Kernel symbols:
,_j’ File Browser % @ Linux Modules
ichardev. ko - [mips/le]i

[% ﬁ? wmlinux - [mips/le]

Figure 55. File Browser showing Kernel and Module symbols

We can double-click on the Module to list the files and double-click on a source-file to show it in the
Source Window. In the below example we have opened the Module source-file (chardev.c) and set a

breakpoint at the function (device read) that we wish to debug (i.e. when this function is called from the
Process)

Ashling Product Brief APB207
Page 29 of 38

|5 genex.s Tt] chardew.c &3 =

¥ dewvice file attempts to read from it. -~
i
static =2size £ device readistruct file *file, A% gee includef.
B char _user * bhuffer, /% buffer to bhe
o * filled with data */
size t length, /% length of the buffer wf
loff © * offzet)
wa
FEy
* Number of bytes actually written to the bhuffer
v
int bytes read = 0: "
L4 >
Figure 56. Setting a Breakpoint in the Module
4. Next, we run our Kernel in PathFinder-XD
%% Debug I 0 | i | & ¥ = 8

4 [c] Ashling Opella-XD (MIP532-24K) [PathFinder-XD Embedded Debugging]
e g g gging
4 &8 vnlinux

2 Thread/Core [0] (Running : User Request)
pl gdb

Figure 57. Running the Kernel

and launch gdbserver on the target (i.e. in the Linux shell) specifying the Process we wish to debug
(testapp). Notice how we tell . /gdbserver which port to listen on (1234)

Figure 58. Launching the Process

Ashling Product Brief APB207
Page 30 of 38

5. Now we need to Debug A Process in Run-mode using PathFinder-XD (the Kernel is now running) as
follows:

NES Target Run Window Help
Modules # ‘ : f

Processes #

el BN Debug A Process in Run-mode

" 8

Figure 59. Debugging a Process in Run-mode

We need to specify the Process:
|_| Run-mode Debugging Options

Process | C\MIPS_ROUTER _LIMUY_wZ2.6.32)srcbestapplashtestapp

Figure 60. Specifying the Process

The location of the shared libraries:
Debugaer Opkions

Main | Shared Libraries | connection
Directories:
[CAMIPS_ROUTER_LINUX_ w2.6.32\ookfs
Figure 61. Specifying the Share Library location

And finally, the connection mechanism (TCP in our example) and IP address of the target system (i.e. the
RouterStation Pro at 192.168.1.1 which is running gdbserver on port 1234):
Cebugger Options

Main | Shared Libraries | Connection |
Twpe: .TCF' -
Host name or IP address: | 192.168.1.1

Part number: [1234

Figure 62. Specifying the Connection mechanism

Ashling Product Brief APB207
Page 31 of 38

Make sure that mips-1linux-gnu-gdb.exe is specified as the GDB debugger (default) and press Debug to
start debugging the Process

7] Ashling TCP_Serial connection (MIPS32-24K)

Specify Attributes For Debugging A Process In Run-mode

| Mame: | Ashling TCP_Serial connection (MIPS32-24K) |

D Run-mode Debugging Options

Process i CAMIPS_ROUTER_LIMUX _v2.6.32\srcikestapph ashtestapp

Stop on startup at: : main

Debugger Options

Main | shared Libraries | Connection |

DB debugger: I Z:\Program Filesyashling' P athFinder- <D or MIPS\GHUDebuggermips-linu:-gnu-gdb, exe | ’ Browse, .,]

GDE command File: | .gdhbirit ! ’ Browse..,]

{Warning: Some commands in this file may interfere with the starkup operation of the debugoer, For example "run®,
[IMon-stop mode {Moke: Requires non-stop GDE)

[JEnable Reverse Debugging at starkup {Moke: Requires Reverse GDE)
[JForce thread lisk update on suspend

@j I l ’ Close

Debug

Figure 63. Debugging a Process in Run-mode dialog

PathFinder-XD will now update as follows:

7] Debug - C:WMIPS_ROUTER_LINUX v2. 6. 32\s1cktestappiashtestapp.c - PathFinder-XD for MIPS

File Edit Linux Target Run ‘Window Help
i B Y% /i F I | ¥ Debug |
¥ pebug 3 [3 i ¥ = 8| % Breakpaints 52| [Memary | 108 Registers | 8 Expressions |
2] fshling Opela-xD (MIPS32-24K) [PathFinder-XD Embedded Debugging] s : gg? | o | @ <f€> =
=& vmlinux
5 Thread [1] (Running : User Request)
» gdb
= E Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-%D Run-mode Debugging]
= E@ ashtestapp
=g Thread [1] 940 (Suspended : Breakpoink) =
= maini) at ashtestapp.c:127 Ox400ef4
= adb b
4 | .
[5] genex.5 T ashtestapp.c &3 | = O ||69= variables 57 == Disassembly 4t =
int main|) Eh Mame Type Walue
{ 4= file_desc int 4259640
int file desc, choice;)= choice int 2143194990
//Try opening and closing hefore displaving menu
file desc = open(DEVICE FILE NAME,O RDWE) ;
if (file deac < 0] {
printf("Can't open dewvice file: %3\n", DEVICE FILE MAME;
return -1; =
+
close (file_desc): v
I b
J{ﬁRemote Systems &4 = 8| B consale 52 = B |5 Fle Browser 51 =
& g = | |Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-+D Run-mode Dek | = #;: ashtestapp - [mips/be]
= [B ashing Opella-xD (MIPSaz-24K) Gepll@|® 2B~ ashtestapp.c
=% Target Debugger IB sddesl
@ mipsaz-24k [pthreadtypes.h
@ types.h
@ uClibe_stdio.h
[+ m stdio.h
[+ @ wihar.bh
chardew ko - [mips/be]
#;? wnlinus - [mipsfbe]
0" wiitable Smart Insert | 127 : 37 :

Figure 64. PathFinder-XD in Run-mode

Ashling Product Brief APB207
Page 32 of 38

Notice how:
e The Debug window show both the Kernel (Embedded Debugging) and Process (Run-mode

Debugging) status:

%% Debug 52 i3] i i i

= E Ashling Cpella-=0 {MIPS32-24K) [PathFinder-x0 Embedded Debugging]
= wrmlinu
52 Thread [1] (Running : User Reguest)
. gdb
B E Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-xD Run-mode Debugging]

= jj‘-j:;‘ ashtestapp
=gf® Thread [1]940 (Suspended : Breakpoint)
= maini) at ashtestapp.c: 127 Oxd00sf4
b gdb
g | ashtestapp
£ >

Figure 65. PathFinder-XD Debug Window showing Kernel and Process (Kernel Run-mode) status

o The File Browser shows the Module, Process and Kernel sources:

= x 5=
= ﬁﬁl ashtestapp - [mips/be]

[+ |_'3| ashtestapp.c

stddef.h

pthreadtypes. b

kvpes.h

uClibc_stdio.b

stdio.h

E vichar. b

+ M'}' chardew ko - [mips/be]

+ ﬁfﬁl wrmlingy - [mips/be]

BFEEEEE

Figure 66. PathFinder-XD File Browser showing Module, Process and Kernel sources

e The Source window shows the source code for our Process from main ()

1S genex.5 Tt| ashtestapp.c &3

int maini)
{
int file desc, choice;
SATey opening and closing hefore displaving menu
file dese = Dpen(DEHICE_FILE_NAHF,CLRDHR]:
if (file desc < 0} |
printf("Zan't open device £ile: %z n", LEVICE FILE NAME,
return -1;
B
close (file desc): w

Figure 67. Process Source

Ashling Product Brief APB207
Page 33 of 38

7. We can now debug our Process as normal with the Kernel running in the background. When our Process
calls functions located in the Module which have a breakpoint set then the Module/Kernel will halt and
PathFinder-XD’s Debug window will update as follows:

5 Debug &2 Ok [@ e i# Y =0
= E Ashling Opella-xD (MIPS32-24K) [PathFinder-%0 Embedded Debugging]
= jﬁ;‘ wermlirnd

=g Thread [1] {Suspended : Breakpoint)
=B device_read() at chardew,c:67 0xd
sys_read() at read_write,c: 3531 OxS00d2704
handle_sys() at scall32-032,5:59 0x50069c04
Dxc400dbet

| gdb
= E Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-¥D Run-mode Debugging]
= ashtestapp
¥ Thread [1] 926 {(Running : User Request)
» gdb
g ashtestapp

£ >
Figure 68. PathFinder-XD Debug Window showing the Kernel halted

Notice how the Kernel is now shown as halted (i.e. PathFinder-XD has automatically switched from run-mode to
stop-mode as the kernel is halted due to the breakpoint in the Module). This demonstrates how PathFinder-XD
easily switches between stop-mode and run-mode within the same debug session.

4.3.2.2 Debugging multi-threaded applications
Multi-threaded applications are supported in run-mode debugging. All the application threads and the associated
Call Stack for each thread are listed. In addition, it is possible to set thread specific breakpoints.

To debug a multi-threaded application in run-mode:

1. Launch gdbserver on the target (i.e. in the Linux shell) specifying the application we wish to debug
(threadtestapp). Notice how we tell . /gdbserver which port to listen on (1234 in the below example)

Figure 69. Launching multi-threaded Process

2. Choose Debug A Process in Run-mode from PathFinder-XD (the Kernel is now running) as follows:
Target Run Window Help

Modules # ; . ;}

eyl el DB [iebug A Process in Fun-mode
m "

Figure 70. Debugging a Process in Run-mode

3. Select the application (Process) to debug
U Run-mode Debugging Options

Process | CAMIPS_ROUTER_LINUX_v2.6.32\stclhreadtestappihresdiestapp |

Ashling Product Brief APB207
Page 34 of 38

4. Enable Non-stop mode and Force thread list update on suspend. This allows debug of a single thread
while other threads are running:
Main | Shared Libraries | Connection

GDE debugger: CProgram Filestashling! PatbFinder-$0FforMIPSGNUL

GDE cammand file: | .adbinik

(wW'arning: Some cammands in this file may inkerfere with the startup opera
Mon-stop mode (Mote: Requires non-stop GDE)
[]Enable Reverse Debugging at startup (Moke: Requires Reverse GDE)

[v]Force thread list update on suspend:

Figure 71. Choosing Non-stop mode

5. Set the location of shared libraries:
Debugger Opkions

Main | Shared Libraties | Cannection

Directories:
CAMIPS _ROUTER_LIMUY_v2.6.32\rootfs

Figure 72. Specifying the Shared Library location

6. And finally, the connection mechanism (TCP in our example), the IP address of the target system (i.e. the
RouterStation Pro at 192.168.1.1 which is running gdbserver on port 1234):
Debugger Options

Main || Shared Libraries | “onnection

Type: | TCP W
Host name or IF address: | 192,168.1.1

Part number: 1234

Figure 73. Specifying the Connection mechanism

7. Now press Debug to start debugging the Process
8. The program will now run to the main () function.

9. Put breakpoints in the following locations:
e threadfin () function which is called by each thread)

roid* threadfn (rvoid* tr_datas)

i
while (1)
i
A print thread and count

A8 printf(":= [%DBlX]Hn",iithread_data]

uzleep(&00)

Figure 74. Setting a breakpoint in threadfin ()

e main () thread
while (1)
i
printf ("In main [3081X] ‘-.n",rnain_cu:uunt++] H
usleep (500) ;
+

Figure 75. Setting a breakpoint in main ()

Ashling Product Brief APB207
Page 35 of 38

10. Now run "™ _wWhen the target halts the Debug view is updated with thread information:
%% Debug 2 O S T R i= ¥ =0

= E Ashling Opella-x0 (MIPS32-24K) [PathFinder-£0 Embedded Debugging]
= wlin
8 Thread [1]{Running : User Request)
| adb
= E Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-%D Run-rade Debugaging]
= JE-‘ threadtestapp
¥ Thread [4] 849 (Running)
=5 Thread [3] 850 {Suspended ; Breakpoint)
threadfnl) at threadtestapp,ci53 Ox400948
pthread_start_thread() at 0x2aacd355
__thread_stark() ak OxZab0e3be

NIRRT R

=g Thread [2] 851 (Suspended : Ereakpoint)
threadfnt) ak threadtestapp,ci53 Dx 400945
pthread_start_thread() at 0x2aacd355
__thread_start{) at 0xZable3bc
=5 Thread [1] 548 {Suspended : Breakpoint)
= main{) at threadtestapp,c:36 0400858
w gdb
g threadtestapp
£ >

Figure 76. Multi-threaded Debug View

Threads are shown as follows:
Thread [4] the thread manager
Thread [3] application thread
Thread [2] application thread
Thread [1] main thread

Note that thread numbering order may vary for different debug sessions and clicking on each thread in the
above Debug View will update PathFinder's windows to that thread’s context.

11. To make a breakpoint thread specific, right-click on the breakpoint (in the ruler i.e. the left-most column of
the source-window in threadfin ()) and choose Breakpoint Properties

5
// print thread and count

PR I | K- — Fe m™m1Tr1h oo e P I, PR .
ad c

Toggle Breakpaink
Dizable Breakpoint

Breakpoint Properties. .,

Breakpaint Types »
@ Togale Hardware Breakpoint

v Shiove Quick, Diff Chrl+Shift+0 i
|

& Preferences, .,

Figure 77. Selecting Breakpoint Properties

e In the Filter, check the threads you wish to associate with the breakpoint (Thread[3] in our example)

Ashling Product Brief APB207
Page 36 of 38

2 Pro perties for, |:|@@
w

| | Filter
Actions
Comrman Restrick to Selected Targets and Threads:
Filter ERWE] C\MIPs_ROUTER, LINUY

[]s® Thread[1]rul
= |:| CHAMIPS_ROUTER_LIMNUX_v2.6,321src\threadtestappithreadtestapp
[]s® Thread[4] 200
2 Thread[3] 501
[]s® Thread[z] a0z
[]s® Thread[1] 799

@j [OF] [Cancel

Figure 78. Breakpoint Properties Dialog

¢ Click OK to set the breakpoint. Now re-run the program and notice that the breakpoint is only taken for
Thread[3].

4.3.2.3 Debugging more than one application at the same time

To debug more than one application or process at a time, you must launch a separate gdbserver with a unique
port number for each process you wish to debug.

1. Run the first process as per the previous section 4.3.2.1 Sample Run-mode Linux Debugging Session

2. The RouterStation Pro uses a Busybox (limited functionality/memory foot-print) shell by default which does
not support running processes in the background (with “s¢”), hence, we need to connect to the RouterStation
Pro using Telnet to open another shell to run and debug a second process. This can be done from putty as
follows:

e Open a new connection to the RouterStation Pro (at 192.168.1.1:23) using the Telnet Connection type:

2 PuTTY Configuration

Categon:

=+ Seszion B aszic options For pour PuT T zeszion
L.Dgglng Specify the destination You want bo connect to

[=)- Terminal

Host Mame [or IP address] Part

K.epboard
Bl 119216811 |23 |
Featurez Connection type;

= WwWindow () Baw () Telnet (O Rlogn () 55H O Senial
A

ppea.rance Load, zave or delete a ztored zeszion

Behawiour
Translatian Saved Seszions
Selection | |

Figure 79. Opening a shell using Telnet

Ashling Product Brief APB207
Page 37 of 38

3. Now run gdbserver (on port 2345) and the threadtestapp as follows:

#192.168.1.1 - PullTY

Enter 'help!

unknown) .
In =
on t

Listening on pi

Figure 80. Running a second process via Telnet

4. You can now connect to each process via the Debug A Process in Run-mode menu (making sure you use
the correct port-number e.g. 2345). The Debug View will show each process as follows:

%F Debug 2 (=]| U i -

=[] ashling Opella-xD {MIPS32-24K) [PathFinder-XD Embedded Debugging]
= vmlinuz
o Thread [1] {Running : User Request)
g gdb
= =.L, Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-%£0 Fun-mode Debugging]
=-f# threadtestapp
=g Thread [1] 806 (Suspended : Breakpoint)
= mainf} at threadkestapp.c:27 0x400850
gl gdb
g threadtestapp
= =.L, Ashling TCP_Serial connection (MIPS32-24K) [PathFinder-%0 Run-mode Debugging)
= ashtestapp
=l Thread [1] 839 (Suspended : Breakpoint)
= main{} at ashtestapp,c:127 Ox400ef4
o gdb
g ashtestapp

Figure 81. Debugging Multiple Processes

These examples show the power of PathFinder-XD’s Embedded Linux support, in particular, the ability to debug
Processes whilst the Kernel is running (Run-mode) and to debug the interaction between Processes and the
Kernel (including Kernel modules). We hope vyou like it! Please send your feedback to
hugh.okeeffe@nestgroup.net

Doc: APB207-PF-XD_MIPS, Hugh O’Keeffe and Suresh PC, Ashling Microsystems

Ashling Product Brief APB207
Page 38 of 38

	1. Introduction
	2. Installation
	2.1 Windows™ Installation
	2.2 Linux Installation

	3. Using PathFinder-XD with the Opella-XD Debug Probe
	3.1 Opella-XD USB Driver Installation
	3.1.1 Windows™ USB Driver Installation
	3.1.2 Linux x86 USB Driver Installation
	3.1.2.1 Ubuntu/Debian libusb installation
	3.1.2.2 Fedora libusb installation
	3.1.2.3 Using libusb on other installations
	3.1.2.4 Setting permissions

	3.2 Debugging with PathFinder-XD
	3.2.1 Connecting Opella-XD to the Target
	3.2.2 Using PathFinder

	4. Embedded Linux Debugging with PathFinder-XD and Opella-XD
	4.1 Hardware Setup
	4.1.1 Upgrading RouterStation Pro flash
	4.1.2 RouterStation Pro Hardware Setup for Embedded Linux debugging

	4.2 Preparing for debugging
	4.2.1 Building with debug symbols
	4.2.2 Compiler optimisations
	4.2.3 On-demand paging (for stop-mode debugging only)

	4.3 Stop-mode Debugging
	4.3.1 Sample Stop-mode Linux Debugging Session
	4.3.1.1 Loading kernel symbol information to PathFinder-XD
	4.3.1.1.1 Debug a module from init_module()
	4.3.1.1.2 Debugging a process from main()
	Note: To exit the application, press Ctrl+C from the Linux console.
	4.3.1.1.3 Debugging a running process
	4.3.1.1.4 Library debugging

	4.3.2 Run-mode Debugging
	4.3.2.1 Sample Run-mode Linux Debugging Session
	4.3.2.1.1 Copying the necessary files to the target
	4.3.2.1.2 Debugging the Module and Process

	4.3.2.2 Debugging multi-threaded applications
	4.3.2.3 Debugging more than one application at the same time

