PathFinder-XD for MIPS™ support for Broadcom

Ashling Product Brief APB213
v.0.1.7, 10* January 2013

Devices
Contents
1. Introduction
2. Installation
2.1 PathFinder-XD Windows™ Installation
2.2 PathFinder-XD Linux Installation
2.3 Opella-XD USB Driver Installation
2.3.1 Windows™ USB Driver Installation
2.3.2 Linux x86 USB Driver Installation
2.3.2.1 Ubuntu/Debian libusb installation
2.3.2.2 Fedora/other distribution libusb installations
2.3.2.3 Setting permissions
3. Debugging with PathFinder-XD

3.1

3.2

Connecting Opella-XD to the Target

3.1.1 Verifying Opella-XD is properly connected to your host PC
Using PathFinder-XD

3.21 Getting started/configuring PathFinder-XD

3.2.2 Downloading your program to the target

3.2.3 Controlling program execution/using breakpoints
3.24 File Browser

3.2.5 Watching program variables

3.2.6 Viewing memory

3.2.7 Viewing registers

3.2.8 Using the console

3.2.9 Viewing the Translation Lookaside Buffer (TLB)
3.2.10 Viewing cache

Multi-core support

411 Multi-core configuration
4.1.2 Debugging multiple cores simultaneously
4.1.3 Examining individual core context

414 Pin and clone support

Trace support

5.1
5.2
5.3
54

Enable/configure trace
Viewing trace

Saving trace

Known issues with trace

Embedded Linux debugging support

6.1

6.2

6.3

6.4

Hardware Setup
6.1.1 Connect 20 Software Development Platform Setup for Embedded Linux debugging
6.1.2 Setting up Putty
6.1.3 Setting up network between host and target
Note: If ping fails, then please recheck your host computer IP settings and your firewall.
6.1.4 Installing TFTP Server on the host PC
6.1.5 Loading the Linux Image using TFTP
Preparing for debugging
6.2.1 Building with debug symbols
6.2.2 On-demand paging (for stop-mode debugging only)
Stop-mode Debugging
6.3.1 Sample Stop-mode Linux Debugging Session

6.3.1.1 Loading kernel symbol information to PathFinder-XD

6.3.1.2 Debug a module from init module ()

6.3.1.3 Debugging a process from main()

6.3.1.4 Debugging a running process

6.3.1.5 Library debugging
Run-mode Debugging

Ashling Product Brief APB213
PathFinder-XD for MIPS support for Broadcom On-chip Trace

Page 1 of 56

OO AR RARPRERWLWOWWWWW

6.4.1 Sample Run-mode Linux Debugging Session
6.4.2 Copying the necessary files to the target
6.4.3 Debugging the Module and Process

6.5 Application specific hardware breakpoint

6.6 Known Issues in SMP Linux Debugging

Conclusion

Ashling Product Brief APB213
Page 2 of 56

46
46
46
52
56
56

1. Introduction

This Ashling Product Brief describes how to use Ashling’s PathFinder-XD source-level debugger (v1.0.6 or later) and
the Opella-XD debug probe with Broadcom BMIPS5000 devices which support On-chip Trace (Zephyr) such as the
BCM742xx family

PathFinder-XD is a C/C++/Assembly debugger based on the Eclipse framework and supports debugging using the
QEMU software simulator (www.gemu.org) or the Ashling Opella-XD Debug Probe connected to MIPS™ powered
target hardware. PathFinder-XD supports both “bare-metal” (no target operating system) and Embedded Linux based
debugging.

The Ashling Opella-XD as shown below is an entry-level Debug Probe for the MIPS family which connects to the host
PC via a USB2.0 HS interface. Opella-XD uses the MIPS EJTAG core extension to provide a comprehensive set of
debug features and supports all EJTAG versions from 2.0 onwards.

Figure 1. The Ashling Opella-XD Debug Probe

2. Installation

PathFinder-XD can be hosted under Windows™ or x86 based Linux and installation requires full administrative
privileges.

2.1 PathFinder-XD Windows™ Installation

Run the SETUP.EXE program from the Windows directory on the supplied CD (or download) and follow the on-
screen instructions. Windows XP, Vista and 7 are supported (32-bit and 64-bit versions)

2.2 PathFinder-XD Linux Installation
Run the ./SETUP32 (32-bit Linux) or ./SETUP64 (64-bit Linux) program from the supplied CD (or download) and
follow the on-screen instructions. PathFinder-XD for MIPS is tested on the following Linux platforms:

e Fedora 13/Ubuntu 10.04 LTS 32-bit/64-bit versions

Please note that the 64-bit Linux version of PathFinder-XD for MIPS requires the 32-bit library package 1a32-1ibs
library, hence, make sure this is installed in your system. For example, to install on Ubuntu/Debian, issue the
following command:

> $sudo apt-get install i1ia32-1ibs
2.3 Opella-XD USB Driver Installation

2.3.1 Windows™ USB Driver Installation
When you first connect Opella-XD to your PC you will get a New USB hardware found message and will be
prompted to install the appropriate USB drivers. The Ashling Opella-XD drivers are supplied on your Ashling CD and
installed in your installation directory. Direct the Windows Hardware Installation Wizard to your installation directory
so that it can locate the necessary drivers and complete the installation. Windows only needs to perform this
operation the first time you connect your Opella-XD to the PC. The Opella-XD USB driver is called 1ibusb0.sys
(libusb0 x64.sys for 64-bit operating systems).

2.3.2 Linux x86 USB Driver Installation
Opella-XD uses the 1ibusb driver (http://libusb.sourceforge.net/). By default, the driver is stored in: /usr/1ib

Check for this as follows:
$ 1s /usr/lib/libusb* /usr/include/usb.h

Ashling Product Brief APB213
Page 3 of 56

http://www.qemu.org/
http://libusb.sourceforge.net/

If you see /usr/include/usb.h and 1libusb-0.1.s0.4.4.0 or higher, then they are installed on your system
and you can skip the next section on libusb installation

Please note: If /usr/1ib/1ibusb directory does not include a file titled 1ibusb.so (exact filename), then create
a symlink as follows:

$ln -s /usr/lib/libusb-0.1.s0.4.4.0 /usr/lib/libusb.so

2.3.21 Ubuntu/Debian libusb installation
Install 1ibusb using the following command:
$ sudo apt-get install libusb-dev

If /usr/1ib/1libusb directory does not include a file titled 1ibusb.so (exact filename), then create a symlink as
follows:

$ln -s /usr/lib/libusb-0.1.s0.4.4.0 /usr/lib/libusb.so

2.3.2.2 Fedoral/other distribution libusb installations
Download the latest 1ibusb from http://libusb.sourceforge.net/ and install as follows:
$ tar zxf libusb-0.1.12.tar.gz (use appropriate version number)
$./configure --prefix=/usr
S make
$ make install

If /usr/1lib/1libusb directory does not include a file titled 1ibusb.so (exact filename), then create a symlink as
follows:

$1ln -s /usr/lib/libusb-0.1.s0.4.4.0 /usr/lib/libusb.so

2.3.2.3 Setting permissions
Ensure that Opella-XD is connected to the PC, connected to the target and that the target is powered.
2. To ensure the current SUSER has access to the Opella-XD device, we recommend using the Linux utility udev
(requires kernel 2.6 or later).
3. Ensure udev is installed and running on your system by checking for the udev daemon process (udevd) e.g.:
$ ps —aef | grep udev
4. Create an udev rules file to uniquely identify the Opella-XD device and set permissions as required by owner/
groups. An example udev file is supplied (60-ashling.rules) which identifies Opella-XD device (by Ashling’s
USB Product ID and Vendor ID).
5. Therules file mustthen be copied into the rules directory (requires root permission) e.g.:
$ sudo cp ./60-ashling.rules /etc/udev/rules.d

-_—

3. Debugging with PathFinder-XD

In this section, we will look at using PathFinder-XD and Opella-XD with the Broadcom BCM7420 board in “bare-
metal” mode i.e. debugging target applications which do not use an operating system.

Host PC
PathFinder-XD runs Opella-x0
on this PG

|
EJTAG

BCMT420 Target

Figure 2. BCM74xx Debugging with Opella-XD

Ashling Product Brief APB213
Page 4 of 56

http://libusb.sourceforge.net/

3.1 Connecting Opella-XD to the Target
Opella-XD is designed to connect to your PC via the USB cable, and your target via the supplied EJTAG cable. Pin 1
of the Ashling EJTAG Cable Connector is clearly identified by a ©+ on the connector; this should mate with pin 1 on
your target’s EJTAG connector. Please note the following recommended target connection sequence:
Ensure your target is powered off.
Connect Opella-XD to your PC using the supplied USB cable and ensure Opella-XD’s Power LED is on.
Connect Opella-XD to your target using the supplied EJTAG cable.
Power up your target.

PN~

3.1.1 Verifying Opella-XD is properly connected to your host PC
PathFinder-XD is supplied with an Opella-XD diagnostic command-line executable (“OPXDDAIG.exe” for Windows
and “OPXDDIAG.” for GNU/Linux x86). OPXDDIAG is run from a command-shell and can be used to test and verify
your Opella-XD is installed and working correctly (including the USB driver) . To run all tests, enter:
» opxddiag --diag 1

Running with-out any parameters displays all available options
» opxddiag

3.2 Using PathFinder-XD

3.2.1 Getting started/configuring PathFinder-XD

PathFinder-XD
for MIPS

1. To get started, run PathFinder-XD

2. PathFinder-XD will then load. If this is your first-time running, then you will be prompted to specify your
Workspace (default directory for projects etc). Accept the default which is located in PathFinder-XD’s installation
directory.

In PathFinder-XD, create a New Target Configuration via the Target
77" Debug - PathFinder-XD for MI

File Edit Linux [Target| Run Window Help
Er;f' Mew Target Configuration

Flash
ﬁ? Debug 23 —

menu:

Figure 3. Target Configuration

and select the Debug using Debug Probe option as shown below:

Ashling Product Brief APB213
Page 5 of 56

Select Remote System Type
Please select the system type of the remote system to connect. :H:

System type:
type filter text

(= Ashling Debugging
g Debug using Debug Probe
=& Debug using Simulator (QEMU)

@ <Back || Net> 1| Finish

Figure 4. Debug using Debug Probe

3. Click Next to configure Opella-XD settings as shown below:

Target

Probe selection
Specify the debug probe

Ashling debug probe configuration
Probetype | Opella-XD 1 =)

Senal number wse first found
USB
Configure ethemet

Figure 5. Probe selection

Settings include:
e Probe type: The actual Ashling Debug Probe Type to use as the target connection. Select Opella-
XD.
e Serial number: The serial number of the Debug Probe to use. Specify the serial number or use first
found and click on Next.

Ashling Product Brief APB213
Page 6 of 56

¥4 Target configuration = @

Debug probe configuration
Canfigure the debug probe

Device selection

MIPS device |Broadcorn BMIPSS000 v‘

JT&G frequency 33MHzZ » Initial target byte order | Little Endian

Additional settings

User register settings file | Browvse,..

[T] Disable irterrupts during single step] Enable DMA mode

[T Single step using software breakpoint] Halt counter in debug mode

Reset settings
@) [ssue no reset on connection
Issue EITAGRBOOT on connection

Issue hard reset and wait 4000 rns befare entering debug mode

Multi-core settings

Cores onscan chain |2 +| Connectto [TAR-0 =

| TAP number DhA& core IR weidth Bypass code
T4P -1 no0nanos noonnniF
T4p -1 noonnnos noononiF

[7] Enable multi-core support [#] Enable non-stap mode

'/7\' < Back Mext = [Einish l I Cancel

Figure 6. Debug probe configuration

The Debug probe configuration settings include:

MIPS device: specifies the MIPS device type you wish to debug. In this example, Broadcom
BMIPS5000 is selected.

JTAG frequency: specifies the JTAG TCK frequency to be used for communicating with the EJTAG
interface on your MIPS device.

Initial target byte order: allows you to specify the memory Endianess of your target system.

User register settings file: group allows you to initialise other registers or memory locations on
PathFinder-XD invocation and after reset. The Browse... button allows these register values to be
loaded from a simple text file. The text file format is:

Name Size Address Value

(all values are in HEX). For example, the following text file initialises the RO, R1, R2 and R3
registers:

RO 0x00000004 0xb800380c 0x18000000

R1 0x00000004 0xb8003808 0x00000006

R2 0x00000004 0xb8004018 0x00000800

R3 0x00000004 0xb800401c 0x0000000c

Disable interrupts during single step: allows you to disable interrupts when single stepping at
assembly level (MIPS instruction level). When checked, PathFinder-XD automatically disables
interrupts prior to an assembly level single step and re-enables them after the single step is
complete.

Enable DMA Mode: enables DMA mode for high-speed transfer between the debug probe and your
target. DMA Mode is only available on systems with EJTAG DMA support.

Single step using software breakpoint: allows you to specify that PathFinder-XD should use
software breakpoints for single-stepping (i.e. PathFinder-XD should not use the EJTAG hardware
based single-step command).

Halt counters in debug mode: allows you tell PathFinder-XD to halt the MIPS Count register(s) (via
writing to the Configuration register) whenever your program is halted. There is a slight delay
between your program halting and the write to the Configuration register. Note that the Registers
window always shows your application values for the Configuration register.

Ashling Product Brief APB213
Page 7 of 56

e Issue no reset on connection: will ensure no hardware reset is issued when you connect to your
target (note that this feature requires updated Opella-XD firmware (v1.1.1 or later) which is supplied
with PathFinder-XD v1.0.6 or later).

e Issue EJTAGBOOT on connection: will issue a hardware reset and halt the target at the reset
location.

o Issue hard reset and wait ‘N’ ms before entering debug mode: will issue a hardware reset and
wait the specified number of ms before entering debug mode. This mode is also known as
NORMALBOOT.

e Multi-core: allows you to select the core you wish to debug for multi-core devices. The BCM7420
device has two cores (or hardware threads) and the first one (TAP-0) is chosen in this example.
Section 4 Multi-core support explains the remaining parameters of Multi-core.

The settings shown are suitable for the BCM7420 target board. Click Finish when done.

4. PathFinder-XD will now create a new Target Debugger setting in its Remote Systems Window as shown below:

1H Remote Systems &7 =08

B 2l =

4 y Ashling Opella-XD (BROADCOM-BMIPS5000);
x Target Debugger

Figure 7. Remote Systems Window

Right-click on Target Debugger and click Connect to invoke the Opella-XD target connection. Once
invoked, the Remote Systems window will update as follows:

8 Remote Systems 53 =0
B & R=
a @ Ashling Opella-XD (BROADCOM-BMIPS5000)

2 ¥k Target Debugger
@‘ BEROADCOM-BMIPS5000

Figure 8. Remote Systems Window showing target connection

If PathFinder-XD fails to connect to the target, then:
1. Make sure the Opella-XD is properly connected to both the host PC and the target (using the proper polarity
on the EJTAG connector) as previously outlined
2. Run the OPXDDIAG utility to ensure Opella-XD is functional and the USB driver is properly installed as
previously outlined.
3. Make sure your target board is powered up.

3.2.2 Downloading your program to the target
1. We can now download a program to the target by right-clicking over BMIPS5000 and selecting Download and
Launch as follows:

Ashling Product Brief APB213
Page 8 of 56

8 Remote Systems 53 b o ¥ = 8 || B Console
Y

4 @ Ashling Opella-XD (BROADCOM-BMIPS5000) Ashling Cpella-X
2 ¥ Target Debugger The target i:
[@* BROADCOM-BMIPS5000 [New Thread :
GoTo L3
&) Refresh i

Rename... F2

Delete... Delete

@? Download And Launch...
Reset k

Figure 9. Download and launch

" Ashling Opella-XD (BROADCOM-BMIPSS000) =

Modify attributes and launch

Mame: Ashling Opella-XD (BROADCOM-BMIPS5000)

] Main | %5 Debugger B Source

Download

ELF (binany) path C\Program Files\Ashling\PathFinder-XDfortIPShexamples\LE\Cached\ControlerfpptDebughControlerfpp.elf

Load Options
Symbaols anly
@ Program and symbals

Load {program and symbaols) and verify (program)

Use fast download (requires 512 bytes of RAN)

OF Awvareness

Enable OS debugging | Linusx

| Apply | | Rewert: |

'\/‘?:] | Debug | | Claose |

Figure 10. Specifying Target Program to Download

Specify the program to use and press Debug to download to the target board. In this APB, we are using the
examples\LE\Cached\ControlerApp\Debug\ControlerApp.elf example which is supplied with PathFinder-
XD and is suitable for running on all Broadcom 74xx targets. Specify the program to use (ELF (binary) path) and
press Debug to download to the target board.

Note:

e PathFinder-XD supports ELF/DWARF format files which should be compiled/linked with debug information.
For example, when using the GNU tool-chain, add the compiler gcc switch “-gdwarf-2” (generate
DWARF2 format debug symbols) when compiling all files you wish to be able to debug. Compiler
optimisations should not be used as they can cause misalignment between the generated symbolic
information and the actual generated machine code thus causing problems when debugging.

e When debugging existing flash based code, you should select Symbols only. This ensures no code is
downloaded to your target system (it is already there in flash) and that PathFinder-XD just extracts the
source-file and symbol information from the specified ELF file.

Ashling Product Brief APB213
Page 9 of 56

e When downloading program and symbols, you can verify that target memory matches the original ELF file
code contents by choosing the Load (program and symbols) and verify (program) option, however, note
that this option increases the overall time due to the verification step.

e Use fast download... will improve your overall program download time, however, it requires that PathFinder-
XD download and use a small 512 byte helper-routine to target RAM at the address specified. Make sure you
chose a suitable 512 byte RAM location that is not used by your application, as PathFinder-XD does not

preserve contents.

2. PathFinder-XD will now download the program and update its Windows as follows allowing you to start your
Debug session:

"2 Debug - C\Program Fileswshiing e XDIOrMIPS \exa =X
File Edit Linux Target Trace Run Window Help
IEEE f eV O 2 (F5eeg)
5 Debug &2 o [z = [4% [@ = = 0 % sreakpoints| [Memory |42 Registers 5 | &7 Expressions L)
[E] Ashling Opella-XD (BROADCOM-BMIPS5000) [PathFinder-XD Embedded Debugging] Name Valie Description -
if? ControlerApp.elf &% General Registers General Purpose and FPU Register G—
1® Thread/Core [0] (Suspended : Breakpoint) 1 zero 00
= main() at main.c:17 0x80100588 8 at 0
»d gdb 7 = i = d

[€] __cs3_reset_malta_ram() at 0x80100000 T8 main.c &2 = O || Variables 3 |22 Disassembly =0
e - PN . | & [
MName Type Value
= &)= iError unsigned int 4277992950
ey o | 9= cCommand char 110’
#include "global.h (= sData data_struct {id
#include <stdlib.h>
/* Global variable to hold message-string */
char szDisplay[DISPLAY SIZE];
nt of the program
int main(void) {
unsigned int iError = NO_ERROR;
char cCommand = NO_COMMAND;
data_struct sData;
ClearDisplay();
while (TRUE) /* Repeatedly handle commands */
* Wait for next command */ - =
P b « b
18 Remote Systems 51 21| 4| B ¥ T 0| B Consale 2 = b8 | BB [E]E) o B~ %~ = O||GFileBrowser £3 $EE=O
Iy {51 3 5
[Ashling Opella-XD (BROADCOM-BMIPS5000) Ashling Opella-XD (BROADCOM-BMIPS5000) [PathFinder-XD Embedded Debugging] gdb :
R Target Debugger The target is assumed to be little endian . ||| wypefilter ted
[# BROADCOM-BMIPS5000 4+ 35 ControlerApp.elf ”
[€] _default types.h L
. (4 allocah 5
g typesh
s [string.h
[_ansih
. (8 stdiibh
4 [&] globalh
DEVICE_B_ADDR
i # MNO_RESPONSE
++ ReadFromDevice(char, data_struct”} -
o* Manufacturer :BRCM Current Core :BMIPS5000 Endianess :Little

Figure 11. PathFinder-XD after program download

3.2.3 Controlling program execution/using breakpoints
1. You can control execution (start, stop, step etc.) using the Debug bar:

7 |6~ =0

%¥ Debug i3 Ol | I

where the buttons are as follows:

O Go

*" Stop/Halt
-%. "% .IZ step Into, Over and Return (Out)

—
Terminate (this button actually terminates the debug session meaning we have to Download and

Launch again)
Figure 12. Execution Control

Ashling Product Brief APB213
Page 10 of 56

When setting/toggling breakpoints in the Source and Disassembly Windows, make sure the mouse pointer is
hovering over the left-most column (known as the ruler) of the Window as shown below:

int main(void) {
unsigned int iError = NO_ERROR;

char cCommand = NO_COMMAND;
data_struct sData;

ClearDisplay();

while (TRUE)} /* Repeatedly handle commands */
1

/* Wait for next command */

do {

Figure 13. Setting a breakpoint

By default, PathFinder-XD sets a software breakpoint. You can set a hardware breakpoint via the right-mouse
menu.
int main(void) {

unsigned int iError = NO_ERROR;

Toggle Breakpoint
Disable Breakpoint
Breakpoint Properties...
Breakpoint Types p pnds
© Toggle Hardware Breakpoint

Add Bookmark...
Add Task... F
ﬁ[‘ Consc

v Show Quick Diff Ctrl+5hift+Q Jling O

Show Line Mumbers

e tar
Preferences...

Figure 14. Setting a Hardware Breakpoint

The set breakpoints will be shown in the Breakpoints view as below:

S Breakpoints 2 i} Memary | fiti Registers isg Expressions =0

XRPAw|BE T
«o display.c [line: 31] [type: Hardware]
[¥] & main.c [line 18]

Mo details to display for the current selection.

Figure 15. Setting a Hardware Breakpoint

2. Breakpoints can also be set via the Run|Breakpoint Configuration dialog. This allows software (RAM) and
hardware (RAM/ROM) based breakpoints to be set. Advanced hardware breakpoints (including data access and
conditional breakpoints) are also supported.

Ashling Product Brief APB213
Page 11 of 56

i - > 5
E Breakpoint Configuration @

Breakpoint Details

Breakpoint Type Hardware Data Breakpoint v]

Ignore Count]

Instruction/Data Access Address

Start Address 000000000

Advanced

Address Match

[T Address Mask (000000000

] Match ASID 0x00000000

Data Match
Mask Value Bits 0..7

D Match Data 000000000 Mask Value Bits 8..15
Mazk Value Bits 16..23
Mask Value Bits 24..31

Transaction Type

) Load i) Store @ Don't Care

OK] [Cancel

Figure 16. PathFinder-XD Breakpoint Configuration

Note: BRCM devices do not support core-specific breakpoints.

3.2.4 File Browser
{_ File Browser &7 s =

type filter text

4 35 ControlerApp -
[g] stdlib.h
[£] _default_types.h
[£] string.h
- €] globalh
a [g display.c
@ szDisplay
MAX_RAND_MUMBERS
o stdlib.h
@ pucPseudoRandirray
@ GethedCommand(char®, data_struc -

m

€[T r
Figure 17. PathFinder-XD File Browser View

This view shows an overview of all the source-files associated with your loaded program and is populated
automatically. Each file can be expanded to view its functions, variables etc. The right-mouse menu option Show
Functions Only can be used to restrict contents to functions only. Double-clicking a file will open it in the Source
view.

Ashling Product Brief APB213
Page 12 of 56

If the source file cannot be found (e.g. are not present in the build path), then the Source view will show the

following:
O .\src\display.c &2 - O
Can't find a source file at ".\src\display.c”
Locate the file or edit the source lookup path to include its location,
"u‘iew Disasser‘nbly...]
’ Edit Source Lockup Path... l
Figure 18. PathFinder-XD Source View
Choose either of the options, Locate File... or Edit Source Lookup Path ... and map the required source file.

Edit Source Lookup Path... will open the following dialog

r ~
E Edit Source Lookup Path &

Edit the source lookup path -
Add, edit or remove source containers
Source Lookup Path:
- = Default Add...

Edit...

Remove

Up

Down

Restore Default

[] Search for duplicate source files on the path

@:’ [oK l ’ Cancel l

% —— — - e e —

——

Figure 19. PathFinder-XD Source Lookup Path dialog

Click Add to open the dialog Add Source shown in following figure. Choose File System Directory and browse to

ey
the folder where the source files are present and click OK. Performing Refresh (" in File Browser) will now
update the File Browser view with the newly found source/symbol information.

Ashling Product Brief APB213
Page 13 of 56

rZE Add Source ﬁﬂ

Add a container to the source lookup path :.* r

A directory in the lecal file system

“T; Absolute File Path
[Compilation Di

[Program Relative File Path

= Project

=g Project - Path Relative to Source Folders
=" Workspace

[=>Workspace Folder

@j [oK] ’ Cancel

Figure 20. PathFinder-XD Add Source dialog

To set breakpoints (software/hardware) from File Browser, right click on any symbol and choose the appropriate
option.

Tl Smrmrmme_mp e
- g string.h
- [€ global.h :
a [g display.c
@ notreallyrand(void)
= string.h
@ DisplayMessage(char, int) -
21 globalh
MAX_RAND_MUMBERS
@ szDisplay
= stdlib.h
‘ GEtN N | G S - ke
@® pucP: Show Functions Only
@ Clearl Toggle Breakpoint
— o Toggle Hardware Breakpoint 3

Figure 21. PathFinder-XD Setting a Breakpoint
Search or filtering is also possible within the File Browser as shown below.

{_ File Browser 2 i ==

main
% ControlerApp

[main.c

@ main{void)

Figure 22. PathFinder-XD File Browser View showing ‘main’

Ashling Product Brief APB213
Page 14 of 56

3.2.5 Watching program variables
1. To watch a variable or expression, select it using the mouse and Add Watch Expression via the right-mouse

button menu as shown below:
*pcCommand = WRITE_DEVICE_B;
RN ->cControlChar = fchar) notreallvrand():

psDats

4

gﬂemote Syste
[Ashling
B Targe
Fle]

Rewvert File

Save

Show In

Source
Surround With
Refactor

Declarations

References

Ctrl+5

Alt+Shift+ W »

Alt+5hift+5 »
Alt+Shift+Z »
k

3

4

Ctrl+R

z ml[

=] Runto Line

. Move To Line

L, Resume At Line

#Y Add Watch Expression...
S PC at Currentline

Preferences...

'Y

Figure 23. Adding a Watch Expression

9% Breakpoints | [J Memory | it} Registers |55 Expressions 2 =’.>E| = X &| 1 ﬂ‘l ea ¥ =0
Expressicn Type Value a0
4 w psData data_struct * (B T7fffal
)= cContrelChar char a8y
)= iDeviceMum int]
=p Add new expression
4 b

Figure 24. Expression window showing watched expression

You can also quickly watch an expression by hovering the mouse pointer over it as shown below:

FEkEkkkkdkkkkkkkdkkkkkkkkkkkkkk ke kkk kR k ko k kg ik Kk
void GetNextCommand(char *pcCommand, data_struct *psData) {
char cPrelCommand;
/* Get random commands */
cPrelCommand = (char) notreallyrand();

Expression Type Value

=)= cPrelCommand char 100 'd*

Mame : cPrelCommand

-~
Details:1ee "d° b
Default:1ee "d° E
Decimal:lee 4
Hex:8x64
¥ Binary: 118166 R
r b

Ashling Product Brief APB213
Page 15 of 56

Figure 25. Quick watch via mouse hover

3.2.6 Viewing memory
1. Memory can be viewed via Window|Show View|Memory.

S Breakpoints n M ﬁ il Registers | &7 Expressions - O
I:fl i Lu1u|| EE|| - =

|Monitors |E|2£ e

[Add Memaory Monitor l

Figure 26. PathFinder-XD Memory View
Add a Memory Monitor and specify the address you wish to view (0xA000-0000 in the below example).

rE Monitor Memony u1

Enter address or expression to monitor:

CreA0000000 -

@ [ok][conce

Figure 27. Adding a Memory Monitor

%% Breakpoints n M ﬁ st Registers & Expressions = O
o

‘Monitors G 3 %% |0:A0000000 : 0xAD000000 <Hex> 52 | <= New Renderings...
& (xA0000000 Address @ - 3 4 -7 8 - B C-F =
Appoaaes oesblAsSC 9B5C5A8F BpeasBAF Bas8163C
Appaaale - 9C247B27 85886003 alealb24 aaaanaae
ABBBEB268 - coobooee paEaaeaa aaeEa006 gaeanaae
ABBBBR3e - coooooeg pEaaaaaa apaaaaae aaaaae0a @

AppBeada BEsBlASC SBSCSABF BREasBAF Basa1B83C
AppBaase oC247B27 BEBacee3 a4ealB624 aaae0806
ABBBaaoe - coooooes pEaaaaea apaaaaae aaaanaae

Figure 28. Memory Window showing contents at 0xA000-0000

Full point-and-click in-line editing is supported for writable target memory locations. Select New Renderings to show
memory as Hex, ASCII etc.

Ashling Product Brief APB213
Page 16 of 56

8 Breakpoints | [J Memory 3 l Wi Registers | & Expressions| =8

[ot g wn |BB) E(E) % - ~

Menitors 4 3% & |0xAD000000 <Hex> | & New Renderings...
@ 040000000 |Memor_|,-' Monitor: 0xA0000000 : GA0000000

Select rendering(s) to create:

Add Rendering(s)
Hex

ASCH

Signed Integer
Unsigned Integer

Figure 29. Selecting Memory Renderings

3.2.7 Viewing registers
1. Register and Peripheral views can be opened via Window|Show View. General registers are shown in the
Register view. CPO etc. registers are shown in the Peripheral Registers view. All views are in-line editable.

Bg Breakpoints uﬂ,?%ﬁ] E _Ma‘m Peripheral Registers &3 | M T L
| e | rqj “._."} | @9 - Mame Value Address e
2 &% Debug Support Registers
i Nk T & Broadcom CPO Registers .
4 [t General Registers E| &% serLocal 0010000000 CP04.2
il Zero 00 £ A% WaitCountX 023297733 CP09,6
it at 02 B8 WaitCount 000000000 CP0O,7
atai V0 07 A5 || Addr 0xDSDSESFC CPO17,0
ol v1 0x20 A% BConfig 0xE01 C200E CP0 22,0
wioi a0 Ot B8\ ode 0x02800801 CP0221
':*3':*3 al 00 B8 A ction 000000000 CPO 222 |
a4 al 05 B8 <psp 000000000 CP0 223 -
aiat 33 0300040 B BootVec 0:8000BFCE CP0 224
ot 0 080800000 A% SleepCount 0:00000000 CP0227
it £ 01010101 8% TraceControl 0x01000000 PO 231
ol £2 0:0 5% TraceControl2 0:50080000 CPO 232
- ot 13 = | Ox2e T B TraceControl3 000000000 CPO 233
- B8 TraceData 000000000 CPO 23.4
NE“EH;:; » * B TraceTrigger 0:00000000 CP0 23,5 1
Decimal:e - -

Figure 30. Registers

3.2.8 Using the console

1. PathFinder-XD supports a Console which can be opened from the Window menu. The Console allows you to
enter debug commands and view their output. The GNU GDB syntax is fully supported. See here for details:
http://sourceware.org/gdb/current/onlinedocs/gdb/index.html or for a handy quick-reference card see here:
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Ashling Product Brief APB213
Page 17 of 56

http://sourceware.org/gdb/current/onlinedocs/gdb/index.html
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

& console 3] | “ug| E||'=’5'E"|_=<j"=|ﬁ
Ashling Opella-XD (BROADCOM-BMIPS5000) [PathFinder-XD Embedded Debugging] gdb

1 o CE -+

ZEro at v vl ald al a2 a3
R@ AEE00000 PRBRERE2 B7fTffas B87ffffaq 87ffffad4 87ffffat eopBEREAL E6084ed3
te Tl t2 t3 t4] t6 t7
R& SBceeR3e 8lelelel eRaRBEEE 20545574 frioic] 28 Sesesese
58 51 52 53 54 55 56 57
R16 87e46dd4 E87@8dTee 8701T138 8702d2a8 37148e80 87@@cchi 0000BEEE Z706TA20
ta t9 k@ k1 gp sp s8 ra
R24 @e8406608 6AEEE006 30602408 B700achs Se88dbbe s7ffff7e 87ffff7e BPER1S5b4

sr 1o hi bad cause pe

B3958817 202282 @R43786e GRBEEERE B30CcBBLlY SeBBl4ATE

fsr fir

paeREEEE BeeeaRRR

Figure 31. PathFinder-XD Console showing the output of the info reg command

2. For example, to dump 16 words of memory in hex format from 0xA0004200, enter the examine command as
follows:
x /lewx 0xA0004200
0xa0004200: 0x00000000 0x00000000 0x74697257 0x20676e69
0xa0004210: 0x41206f74 0x6£632020 0x656c706d 0x2e646574
0xa0004220: 0x00000000 O0xa0004228 0x00000004 0xa0004238
0xa0004230: 0x00000000 0x00000000 0x00000000 0x00000000

3. Console commands can also be stored in a text file (GDB script file) and executed from PathFinder-XD’s Run
menu.

3.2.9 Viewing the Translation Lookaside Buffer (TLB)

1. The Translation Lookaside Buffer view (open from the Window|Show View menu) shows the contents of the
TLB. Right-mouse menu options allow to conveniently setup the TLB to sensible defaults (i.e. perform no
mappings) and edit entries.

E Translation Lookaside Buffer &3 Qé'"" =8
Index PS VPN G ASID PFM1 a D1 Vi PFM2 c2 D2 V2 it
000 8KB 0xD000D W 000 0xD0000 0ne2 W A 0xD1000 i) ¥ N
001 KB 0xD2000 A 000 0xD2000 02 A A 0xD3000 2 ¥ A =
002 KB 0xD4000 A 000 0xD4000 02 A A 0xD5000 2 ¥ A
003 KB 0xD&000 Y 000 0xDG000 02 Y Ay 0xD7000 2 ¥ Ay
004 KB 0xDB000 A 000 0xDE000 0he2 A A 0xD9000 2 ¥ A
005 KB 0xDAQ00 A 000 0xDA000 02 A A 0xDBO0O 2 ¥ A
006 & KB 0xDC000 A 000 0xDC000 02 A ¥ 0xDD000 2 ¥ A
007 8KB 0xDE0OOD W 000 0xDEODD 0ne2 W A 0xDFO00 i) ¥ N
008 & KB 0xE0000 A 000 0xE0000 02 A A 0xE1000 2 ¥ A
009 & KB 0xE2000 A 000 0xE2000 02 A A 0xE3000 2 ¥ A
a0 A 8KB OxE4000 W 000 0xE4000 Ohe2 W A 0xE5000 2 ¥ N
0:0B & KB 0xEGO00 A 000 0xE6000 0he2 A A 0xE7000 2 ¥ A
0:0C & KB 0xEB000 A 000 0xE&000 02 A A 0xES000 2 ¥ A
00D &KB OxEA000 A 000 OxEAQ00 02 A ¥ 0xEBOOD 2 ¥ A
0:0E & KB 0xECO00 A 000 OxECO00 0he2 A A 0xEDOOO 2 ¥ A
0:0F & KB OxEE000 A 000 OxEE000 02 A A OxEF000 2 ¥ A
Mo N avD Mo COONIN. AT o400 PP =T T Tl N AT ATS [PP e W T T M3 AT LTS

Figure 32. PathFinder-XD TLB Window

Ashling Product Brief APB213
Page 18 of 56

3.2.10 Viewing cache

The Cache View (open from Window|Show View menu) displays the contents of all caches including the
primary L1 caches (data cache and instruction cache) and secondary L2 caches (if present). Each cache is
shown in a separate tab. Each view shows the cache entry (instruction/data), physical address, index, way and
status (Valid, Locked, or Dirty). Instruction disassembly is also show for the Instruction cache. Cache contents

may also be saved to a file.

"/ Cache View 2 v B 8 E fs O]
L1 Instruction | |1 Data | L2 Source
Index Way Adress Data Disassermnbly .:'
] 0 =
0x2F000 0x4052125 Jong 0x04052125
0x2F004 0:240300C1 addiu Sv1,5zero, 0xC1
021003 014041902 bne Szerc, $a0,0:0000640C
0x2f00c 0xDZ200C8 jal 007080320
0x5e010 0xDC 20080 jal 007080200
05014 04 0018E3 bltz Szero,:00006390
05018 014032106 bne Szero, $+1,0:0000841 C
Ox5ellc 04 4020C0 btz 50, 000008304
Oxbec020 014802100 bne 5al, $zero, 0:00008404
Oxbec024 0x4041923 bne
Oubc028 0o 201 FAOOO addi 5ra,Szero, -0:0000
Oxbel2c 04022081 bltzl Szerc, 000008288
Oxbec030 0:3C008080 lui Szero,0xE080
Oxbec034 041 COOFED lui -

=

| 7 Cache View &%

Figure 33. Instruction cache

|| L1 Instruction | L1 Data | L2 Source|

VERALGS S -0

Index Way
0 0
0 1

v
1

L
0

D Adress Data

1
07821000 (heBFCECS8E
0781004 0:B0525BA0
0x78c1008 0100000
0x78c100c 077386460
0xf182010 0D
Of182014 0D
f182018 (030000000
efl8201c 00

0
0292000 0304 B9758
0292004 (xB0527884
0292008 080527704
029200 ¢ OxeFA
0524010 0:B0002EDD

Figure 34. Data cache

Ashling Product Brief APB213
Page 19 of 56

14

'{;.—,'"Cache‘u‘iew S@[o g 5% ﬁ] 0 j o
L1 Instruction I [} Data| L2 Source
Index Way V L D Adress Data Disassemnbly
] 0 1 |0 D
08024000 00
08024004 0
0:802d008 00
0x802d00c 00
0:1005a010 00
0:1005a014 00
0:1005a018 00
0:1005a01 ¢ 00
0:200b4020 040
0:200b4024 00
020004028 00
0:200b402c 0
0:200b4030 040
0:200b4034 00

Figure 35. Secondary cache

2. The Cache window allows you to perform the following actions for the currently viewed cache:
¥ Show Valid only
%Show Locked only
o Show Dirty only
g Invalidate currently selected cache memory
E]_Save View to a .CSV file
B Load/initialise cache from a previously saved .CSV file

Clear view

{;i} 'l'—ﬂa|

—_Refresh view (re-read cache from target)

Ashling Product Brief APB213
Page 20 of 56

4. Multi-core support

PathFinder-XD can debug multiple cores simultaneously. Details regarding multi-core configuration and debug
operations follow:

4.1.1 Multi-core configuration
Multi-core configuration is done via the Target Configuration Wizard. See portion marked in RED in below figure.

E Target configuration I._lﬂléj

Debug probe configuration

Configure the debug probe

Device selection

MIPS device |Broadcom BMIPS5000 v]

ITAG frequency 35MHz + Initial target byte order |Little Endian -
Additional settings

User register settings file

[] Disable interrupts during single step [Enable DMA mode
[T Single step using software breakpoint [] Halt counter in debug mode

Reset settings
@) Izzue no reset on connection
) Iesue EJTAGEBOOT on connection

_ Issue hard reset and wait 4000 ms before entering debug mode
 Multi-care settings ™
Cores on scan chain Connectto [TAP-0 =
TAP number DMA core IR width Bypass code
TAP -0 00000005 0000001F
TAP -1 00000005 0000001F

Enable multi-core support Enable non-stop mode

Y
'\2_,.' Mext = Finish l [Cancel

Figure 36. Target Configuration Wizard

Multi-core configuration settings include:

e Cores on scan chain: specifies the total number of cores on the JTAG scan-chain

e Connect to: select the core to which you need to connect initially

o Enable multi-core support: enables multi-core debugging. If unchecked, only the core selected via
Connect to can be debugged.

o Enable non-stop mode: allows examination of halted cores context without intruding/halting other running
cores i.e. you can halt individual cores/threads without affecting other cores/threads. By default, this mode is
on.

All entries are automatically set to sensible defaults when you select the BRCM device.

Ashling Product Brief APB213
Page 21 of 56

4.1.2 Debugging multiple cores simultaneously
All active cores will be listed in the Debug view as shown in the following figure e.g. TAP-0 is shown as Thread/Core
[0] and TAP-1 as Thread/Core [1]:
%5 Debug 22 e] @ |32 @ eS| 3|6~ =0
4 [] Ashling Opella-XD (BROADCOM-BMIPS5000) [PathFinder- XD Embedded Debugging]
4 7 vmlinux.elf
4 o Thread/Core [1] (Suspended : Signal : 0:Signal 0]
rdk_wait() at genex.5:147 (20000000
cpu_idle() at process.c:70 0:8000kb024
brem_reset_nmi_vec() at vector.5:143 0xB0445598
]

a4 3 Thread/Core [0] (Suspended : Signal : 0:Signal 0)
= rdk_wait() at genex.%:147 0x80003000
= cpu_idle) at process.c:70 080000024
= start_kernel() at main.c:702 0x80544ad8
= kernel_entry() at head.5:99 0x80440adc
p| gdb

Figure 37. Target Configuration Wizard

OF 00 M 3 o _@

In non-stop mode debugging, separate run control buttons are available for all active

cores.
1. To control all cores simultaneously, click on the root in the Debug view (vmlinux.elf in the above figure).

2. To control a specific core (and not halt/intrude other running cores), click on the specific core in the Debug view
(Thread/Core[1] or Thread/Core[0] in the above figure).

Non-stop mode requires that the target device supports non-stop debugging. When the target does not support this
feature (e.g. BRCM7400), the run control buttons are common to all cores (hardware threads) e.g. when one core is
halted, all the other cores are also halted (aka all-stop mode).

4.1.3 Examining individual core context
All debug views (Memory, Registers, Variables etc.) update when a particular core is selected in the Debug view.

4.1.4 Pin and clone support
Pin and clone allows comparison of views from multiple cores. PathFinder-XD supports cloning debug views and
pinning to cores (or hardware threads), thereby allowing core context comparison as depicted in the following figure.

& Debug - Source not found. - PathFinder-XD for MIPS . L =]
File Edit Linux Target Trace Run Window Help
AL s (B 0ag)
%5 Debug 2 T Ok |3 = | i | @2 ¥ = O || Registers <1> &2 24 | | @ ¥ = O | Bl Registers 2 | F f.%'é S
4 [T] Ashling Opella-XD (BROADCOM-BMIPS5000) [PathFinder-XD Embedded Debuge |vmlinux.elf: Thread [2] | vmlinux.lf: Thread [1]
4 (1 vmlinucelf Name * || Mame Value
ore [1] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap) B4 Gene ¥4 General Registers peipose and FPU Register G,
="Rowsit(, at genex.5:147 0x0003000 00 £ 8 zero 0:0
= cpu_idle]) at procEewe] ;80000024 i 0:10008500 ! i at 0:10008700
= (xd0003564 i 0800080 e v 080008

Core [0] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap) e 02 me g
= ait() at genex.5:147 0x80009000 o 0xBfcR0008 e a0 =
= cpu_idie[Pesagpcess.c:70 (480000024 e Ol f2f5bda e al 0x2a370039
= start_kernel() at maifTewi2 0>80544ad8 o oa Qb wlaz Oxbd
= kemel_entry() at head.5:09 (x307%8ad] o a3 Oxbe 3 (cfidab3be
pa gdb i) 00 0 Ol
iR 0x) t 0x0
2 Oxda fittR =l 03
T 20000 Mo ot
it 0:Bf1799b8 it Oeck
Liti=? Oxdfdeedf4 il LitRe? 00
0ta i an

4 1 13 4 (1} 13 4 I »
Figure 38. Pin and Clone

The pin colour (e.g. red or green) in the Debug view matches the pin colour in the corresponding cloned view e.g. the
Registers or Registers <1> views in the above figure.

Ashling Product Brief APB213
Page 22 of 56

5. Trace support

PathFinder-XD supports Broadcom’s Zephyr trace. This is a powerful on-chip trace implementation that allows real-
time capture of code and data trace for all hardware threads (or cores). Captured Zephyr trace data is stored on the
target’s L2 cache (up to 128KB can be allocated for trace) and can be accessed and displayed in PathFinder-XD via
the target’'s EJTAG debug port (using the Opella-XD connection).

5.1 Enable/configure trace
1. Trace can be enabled as shown below:

File Edit Linux Target | Trace | Run Window Help

= E @ .ig @ Enable Trace

rﬁ? Debug &3 | & Trace Configuration =L = | i | ﬁ%} =
[] Ashling Opella-XD (Load Trace Configuration dded Debugging]
1 Controlerfpp.elf E
i View T
p® Thread/Core s]
#® Thread/Core Save Trace Data To File
= main() at Load Trace Data From File

E-":E gdb Enable/Dizable Trace Activate Bit

El

Figure 39. Enable trace

Enable Trace will configure trace with the default/current settings. When configuring for the first time, the Trace
Configuration dialog will pop up. Subsequently, this can be accessed using the Trace Configuration option from
the Trace menu as shown in following figures:

File Edit Linux Target | Trace | Run Window Help

= 3 @ Enable Trace
%:;DEbUg & [# Trace Configuration i El > | o =5
[T] Ashling Opella-XD (Load Trace Configuration L4 Debugging]
T8 ControlerApp.elf
u\ﬁ R E View Trace

p® Thread/Core _
#® Thread/Core Save Trace Data To File

Load Trace Data From File

Enable/Disable Trace Activate Bit

= main() at
g gdb

e~

Figure 40. Trace Configuration

Ashling Product Brief APB213
Page 23 of 56

& Trace Configuration u@&]

Target details

Trace memory size B64KB (way b-7 of L2 cache) v]

[] Trace cycle accurately (include idle cycles)

Start/Stop trace
Start tracing on Stop tracing on
@ Program execution Trace buffer full
() Trigger event [T] Trigger event

Trace |0

Last instruction executed

b Advanced trace settings

oK] [Load] [Save] [Cancel

Figure 41. Trace Configuration dialog

Trace Configuration settings include:
e Trace memory size: allows you to choose the portion of L2 cache to be used as trace buffer.
Note: Please ensure that your application does not use this portion!
e Trace cycle accurately (include idle cycles): enables cycle accurate tracing (accurate but limits trace
capacity, as more information is stored)
e Start/Stop trace: allows you to tell PathFinder-XD when to start tracing and stop tracing.

Click Advanced trace settings to expand the configuration dialog:

Ashling Product Brief APB213
Page 24 of 56

"€ Trace Configuration

Target details

Trace memory size

Start/Stop trace
Start tracing on
@ Program execution

) Trigger event

¥ Advanced trace settings

Trace conditions

Core/Thread to trace

64KE (way 6-7 of L2 cache)

[7] Trace cycle accurately (include idle cycles)

Stop tracing on
Trace buffer full
[7] Trigger event

Trace |0

Last instruction executed

LAl

Thread 0
Processor Mode
[¥] Trace during Kernel mode
[¥] Trace during Error mode
[#] Trace during Exception mode
[¥] Trace during Supervisor mode
[Trace during User mode

Trace the following

[¥] Trace all taken branches

[#] Trace target function call/return
Data from store instruction

Data from load instruction

[¥] Address from store instruction

[¥] Address from load instruction

[[] Compact trace (branch/jurmp only)
@ Trace all processes

_) Trace processes with process IDs

Thread 1
Processor Mode
[#] Trace during Kernel mode
[¥] Trace during Error mode
[#] Trace during Exception mode
[#] Trace during Supervisor mode
[Trace during User mode

Trace the following

[¥] Trace all taken branches

[#] Trace target function call/return
Data from store instruction

Data from load instruction

[¥] Address frem store instruction

[¥] Address from load instruction

[[] Compact trace (branch/jurmp only)
@ Trace all processes

_) Trace processes with process IDs

000

(00 000

(00

o J[|

Figure 42. Trace Configuration dialog — expanded view

Advanced trace settings include

Core/Thread to trace: allows you to choose the threads to trace.
Thread0: All settings under Thread0 are specific to Thread 0. You can choose when to trace (Processor
mode) and what to trace (Trace the following). The different options available are shown in above figure.
Process specific tracing is possible by specifying ASIDO and ASID1 values. Similar settings exist for
Thread1 as well.

Note: As of writing, Compact Trace mode is not supported.

2. All user Trace Configuration selections can be saved to a file and subsequently restored using the Save and

Load buttons in the Trace Configuration dialog.

Ashling Product Brief APB213
Page 25 of 56

1.

5.2 Viewing trace

Once captured, trace information is shown in the Trace perspective (Trace|View Trace) as follows:

W Trace - ZhAshlinghPathFinder-XDfortAIPSiexamplesiLE\Cached\Cantrolerdpphsrcdisplay.c - PathFinder-xD for MIPS

Eile Edit Linuz Target Trace Bun Window Help
EEEE sv¥ <
:’SﬁDebug i

=

0| B Trace 3

e | 2R
4 1@ Controlerdpp.elf
@ Thread/Core [1] (Running)
a o Thread/Core [0] (Suspended : Signal : 0:Signal 0
= ClearDisplay() at display.c:61 0x80001420
= DisplayMessager) at display.c:33 (80001260
= rainf) at main.c:d5 080001664
w gdb

T

| &~
4 E Ashling Opella-XD (BROADCOM-BMIPSS000) [PathFinder-XD E

Filter

oy thread/core

oy cache risses

oy load instructions

[¥] Shew thread fcore 1

Show branches

| Show stare instructions

[7] Showvidle eycle inforrmation

[¥] Show events

= ol

FEN

Settings
100000

Goto frame :

[¥] Show execution details

Fr.. Th. Address Execution Detail Opcode Disassembly Source Line >
T0 Processor Mode:Kernel mode T1 Procesor mode:Exception mode
1 I} (xB0001418 I-pipe arithrnetic/no-op,., 13C028000 lui $0, 08000 szlisplaylindex] = '
2 1] 0x8000141C K-pipe atithrnetic/no-o., 124436848 addiu $v1,$0,0x6848 szlisplay|ilndex] ="
3 1] OxB0001420 K-Pipe load instr,cache . (BFC20000 lioe e, 00 (3) szllisplay|index] = '
0 La: 0:B7FFFF20 Lel: 000,
4 0 Dxg0001424 I-pipe atithmetic/no-op... 000621021 addu $0, 51, 50 szDisplaylilndex] = '
5 1] (0xB0001428 K-pipe arithmetic/no-o., =24030020 addiu Bvl, fzero,0x20 szlisplayliIndex] = '
i Exception,Pipeline flush..,
7 1] OxA000142C K-Pipe stare instr,cache . (40430000 T B, 00 () szllisplay]Tndex] = *
0 Sa; IB000GATE Sdl; (<00,
8 1] 080001430 K-Pipe load instrcache . (BFC20000 loe e, 00 (36} for (Index = 0; iIndex < DISPLAY_SIZE; ilndex+ +)
0 La: 0:B7FFFF30 Ldl: 000...
] 1] 0x80001434 J-pipe arithmetic/ho-op.,, 24420001 addiu $e0,5.0,0x1 for {iIhdex = [; iIndex < DISPLAY_SIZE; ilndex++)
10 1] OxA0001438 K-Pipe stare instr,cache . (AFC20000 st 0, D0 (Bfp) for (Index = () iIndex < DISPLAY_SIZE; ilndex+ +)
0 Sa; IBTFFFF30 Sdl; (=00,
11 0 0x2000143C K-Pipe load instr,cache . 0:BFC20000 I el 020 () for (Index = [iIndex < DISPLAY_SIZE; ilndex+ +)
0 La: 0:B7FFFF20 Lol: 000...
12 Exception,Pipeline flush.. -
< m 3
[E] _cs3_reset_malta_ram() at 080001000 | mainc T displaye 22 =0

strepy(szDisplay, szlocalString);

i

. void ClearDisplay(void) {

int iIndesx;

for {iIndex = @; iIndex < DISPLAY_SIZE; iIndext+)
szDisplay[iIndex] = * °;

]

!

Get comand from remote host

!
void GetMextCommand(char *pcCommand, data_struct *psData) {

char cPrelCommand;

/* Get random cemmands */

cPrelCommand = (char) notreallyrand();

if (cPrelcommand »= 1@@)

*pcCommand = NO_COMMAND;
if (cPrelCommand >= 75 && cPrelCommand < 10@)

Current Care [BMIPSI000

m

Manufacturer :Broadcom Endianess iLittle

Figure 43. Trace Perspective

The Trace window shows the reconstructed trace information in a human-readable, high-level format.
Information is reconstructed using the previously downloaded .ELF file; if the captured code information is
not from within this .ELF file, then PathFinder-XD reads target memory to determine the actual executed
code. Accessing target memory requires more time to populate the view, however, it allows support for both
kernel and application code trace reconstruction when the target is running Linux.

Trace information can be filtered (i.e. removed from the window) via the Filter control. Information is colour-

coded as follows:

All branch instructions are shown in red
All load instructions are shown in blue
All store instructions are shown in green

All TO/T1 instructions are identified by separate background shades

Double-clicking on a line on the Trace window updates the Source window below to show the equivalent line.

Ashling Product Brief APB213
Page 26 of 56

5.3 Saving trace
Trace information (exactly as shown in the window) can be saved to a .CSV file and reloaded into PathFinder-XD
S

(using on the Trace window). CSV format allows logging of trace information for off-line viewing (e.g.
using Microsoft Excel as in the following figure).
L B Al % TraceSaveData - Microsoft Excel - =X
Home Insert Page Layout Formulas Data Review View @ - = x
s Calibri Qe = [8~| | Siwrap et General - JE :ﬁ‘-'a‘ Ealutasunr ?? ﬁ
o Satopy s " e DL e
Lz F Format Painter |B oz w~] S A EMerge & Center = ||| 8~ % 2 [[%:8 5% Fc\;jrrr‘ndaltt‘\unngalv a:?;’lg\aet' s@cfellv Insert Delete Fomst 5 i~ E\T{:ﬁ :;T:ctkv
Clipboard] Font] Alignment 2 Number & Styles Cells Editing
| £33 - £ -
A B & D B £ G H 1 |
1 |Frame Threadld Address Execution Detail Opcode Load Details Store Details Disassembly Source Line
anl- = -
i 1- - Exception, Pipeline flush or Interr - - -
4 2 1 0x80100368 J-pipe branch instruction-AL,8..AL 0x0C040260 - jal 0x80100980 TestAssemblyFunction(];
Gl 3 0 0x8010036C K-pipe arithmetic instruction 0x00000000 - nop TestAssemblyFunction(};
6 4- 5 1/D cache miss =
7 5- Tracing re-enabled -
3 | 6 - - Exception, Pipeline flush or Interr - - -
9 | 7 0 0x80100980 J-pipe arithmetic instruction 0x27BDFFFS - addiu $sp,Ssp,-0x8
10 8- 5 1/D cache miss = = - 2
1 £l 0 0x80100984 X-Pipe store instruction,cache hit OxAFBEOD04 - Sa: 0x00000000 Sd: 000000000 sw $fp,0x4($sp)
12 0- Sa: 0x00000000 $d: 0x00000000 - Sa: 0x00000000 Sd: 0x00000000 - -
B 10 1 0x80100988 J-pipe arithmetic instruction 0x03A0F021 - - addu $fp,$sp,Szero -
14 11 0 0x80100370 K-Pipe store instruction,cache hit 0xAFCO003C - Sa: 000000000 Sd: 0x00000000 sw Szero,0x3C(sfp) for (iSwitchVal=0;iSwitchVal<=10;iSwit
15 |- 0- Sa: 0x00000000 $d: 0xD0000000 - Sa: 0x00000000 Sd: 000000000 - -
16| 12 0 0x80100374 J-pipe branch instruction-J or take 0x08040112 -] 0x80100448 for (iSwitchVal=0;iSwitchVal<=10;iSwit]
17| 13- - 1/D cache miss - - - -
18 14 0 0x80100378 J-pipe arithmetic instruction 0x00000000 - - nogp for (iswitchVa
19 15 0 0x80100448 K-Pipe load instruction,cache hit 0x8FC2003C La: 0x00000000 Ld: 0x00000000 - Iw Sv0,0x3C{$fp) for (iSwitchVa vitchVals=10;iSwit}
20| 0- La: 0x00000000 Ld: 0x00000000 La: 0x00000000 Ld: 0x00000000 - -
21| 16 - 1/D cache miss - - - -
22 17} 0 0x8010044C J-pipe arithmetic instruction 0x28420008 - sIti Sv0,5v0,0x8 for (iswitchVal= vitchVal<=10;iSwit]
23 18 0 0x80100450 J-pipe branch instruction-J or take Ox1440FFCA - bne $v0,5zero,0x801. for (iSwitchVal vitchVals=10;iSwit}
4| 19 0 0x80100454 K-pipe arithmetic instruction 0x00000000 - - nop for (iSwitchVa vitchVal<=10;iSwit}
35| 20 0 0x8010037C K-Pipe load instruction,cache hit 0x8FC2003C La: 0x00000000 Ld: 0x00000000 - Iw $v0,0x3C{Sfp) switch {iSwitchVal)
26 0- La: 0x00000000 Ld: 0x00000000 La: 0x00000000 Ld: 0x00000000 - -
27 2 0 0x80100380 J-pipe arithmetic instruction 0x2C42000A - sltiu $v0,5v0,0xA switch {iSwitchVal)
28| 23- - 1/D cache miss - - - -
29| 23 0 0x80100384 J-pipe branch instruction-not take 0x10400028 - beg Sv0,52ero0,0%801 -
30| 24 0 0x80100388 K-pipe arithmetic instruction 0x00000000 - - nogp -
| 2 0 0x8010038C K-Pipe load instruction,cache hit 0x8FC2003C La: 0x00000000 Ld: 0x00000000 - Iw Sv0,0x3C{$fp)
32 0- La: 000000000 Ld: 0x00000000 La: 0x00000000 Ld: 0x00000000 - -
33 26 1 0x80100390 J-pipe arithmetic instruction 0x00021880 - sl $v1,$v0,052
M| 27 1 0x80100394 J-pipe arithmetic instruction 0x3C028010 - lui $v0,0x8010
35 28 1 0x80100398 J-pipe arithmetic instruction 0x24425260 - addiu Sv0,5v0,0x52E(-
36| 29 1 0x8010039C J-pipe arithmetic instruction 0x00621021 - - addu $v0,5v1,Sv0
37| 30 0 0x801003A0 K-Pipe load instruction,data defer 0x8C420000 La: 0x00000000 Le: 0x00000000 - Iw $v0,0x0(5v0)
38 0- La: 0x00000000 Ld: 0x00000000 La: 0x00000000 Ld: 0x00000000 - - .
W 4> | TracesaveData ¥J . T m I =0
) = R oy, ey 10,2012

Figure 44. Saved Trace .CSYV file

2. When the user saves a CSV file, a raw trace file is also created in the same directory with the extension .csv.raw.
This is an ASCII text file which shows the L2 cache trace memory as a list of 32-bit words in hexadecimal format.

Figure 45. Trace .CSV.RAW file

E-] trace.csv.raw l

1 TC1 =0XCS0BO000
2 Tcz =0%XS8080000
5 TC3 =0X1ECFLECF
4 4000300
5 g70zb3zc
& 8702b300
7 43584388
& sTO2h3ze
o grozbize

10 43552355

11 870zb3ze

1z 870zhbizc

13 4355435H

14 870zbize

15 &70zbize

16 43852388

17 870zhizc

15 8702hize

15 43884388

20 570zb3ze

21 g702b3zc

Ashling Product Brief APB213
Page 27 of 56

5.4 Known issues with trace
The BMIPS5000 Zephyr on-chip trace implementation has the following known issues as of writing:

1. Compact Trace Mode is not supported.

2. Data access based triggers are supported; however, Instruction execution based triggers do not work reliably
and should not be used (due to silicon issues).

3. 128KB Upper trace configuration will not work reliably (due to silicon issues)

4. If you are debugging the Linux kernel, then you may experience a kernel crash if trace is configured either before
booting or after booting. This is a known silicon issue and the following workaround should be used:

o Enable and configure trace as normal before booting/running the kernel

e Temporarily disable trace via the Enable/Disable Trace Activate Bit (via Trace Menu or @button)
Boot/run the kernel until it is ‘up’.

¢ Now enable trace via the Enable/Disable Trace Activate Bit (via Trace Menu or button)

5. PathFinder-XD supports simultaneous tracing of both kernel and a single application, however, simultaneous
tracing of multiple applications is not supported.

6. Embedded Linux debugging support

PathFinder-XD (v1.0.6 or later) supports Embedded Linux Debugging for kernels based on v2.6.26 or later. Both
Standard (non-SMP) and SMP Linux debugging are fully supported.

Support works in two modes:
e Stop-mode: Debugging is done via the on-chip debug interface (e.g. via Opella-XD) and the whole system is
halted (e.g. kernel and applications) whenever a breakpoint is taken.
e Run-mode: Debugging is done purely in software (i.e. no Opella-XD is required) via a target serial/Ethernet
interface and requires an application (GDB server) running on the target. In run-mode, the kernel continues
to run when an application breakpoint is taken.

Stop-mode debugging is useful for bringing up the kernel as it only requires a functional on-chip debug interface and
allows debug from reset. Stop-mode can also be used for process debugging, however, the kernel/interrupts etc. will
not continue to run when halted (unlike run-mode). When stop-mode debugging a process, PathFinder-XD
automatically scans the kernel MMU mapping for that process and sets up the MIPS core TLB to allow debug access
to the process’s memory area. Run-mode debugging requires that the kernel is up and running and allows non-
intrusive debug of a process (i.e. the kernel will continue to run even when a process is halted). Run-mode also
supports thread-aware breakpoints and simultaneous debug of multiple processes.

6.1 Hardware Setup
This section demonstrates SMP Linux Debugging using PathFinder-XD and Opella-XD connected to a Connect
20 Software Development Platform (the ‘target’). This platform is powered by a Broadcom BCM7420 dual-threaded
750MHz MIPS device (http://02f0fbc.netsolstores.com/broadcomopenset-topbox-connect20.aspx) running Linux
Kernel v2.6.37.

Ashling provides the associated Linux Kernel sources files for download at
http://www.ashling.com/support/MIPS/Connect20/MIPS CONNECT20 LINUX v2.6.37.zip and
these should be installed by unzipping to your local hard-disk (ensure you preserve the directory structure as present
in the ZIP file i.e. C:\MIPS_ CONNECT20 LINUX v2.6.37\). These sources are needed for source-level debug of
the kernel and they also include some examples that demonstrate other PathFinder-XD features.

Ashling Product Brief APB213
Page 28 of 56

http://02f0fbc.netsolstores.com/broadcomopenset-topbox-connect20.aspx
http://www.ashling.com/support/MIPS/Connect20/MIPS_CONNECT20_LINUX_v2.6.37.zip

6.1.1 Connect 20 Software Development Platform Setup for Embedded Linux debugging
For Embedded Linux debugging, setup your hardware as shown below.

PathFinder-XD runs on the

host PC and uses Opella-XD

for Stop-mode debugging

(Kernel) and the Ethernet

connection for Run-mode

debugging (Processes). Host PC

The host contains the
original Linux kernel source-

files required for source- 192.168.1.

level debugging in ENET
PathFinder-XD.
Host also runs a Terminal
program (e.g. putty)
Connect 20

Software Development Platform

RS-23]

(115,200:8bit:1stop:no parity: no flow)

’ EJTAG
Opella-XD EJTAG \)

Figure 46. Embedded Linux Demo setup

usB

6.1.2 Setting up Putty

You will need a terminal program (e.g. putty) running on your host PC to show the target’s Linux shell (and status
messages during boot). The terminal should be configured as per the RS-232 settings shown below.

ﬁ PuTTY Configuration @
Cateqgory:
I+ Sessian Options controling local zerial ines
L.Dgglng Select a serial line
=I- Terminal o
- Keyhoard Senial line to connect to COm1
- Bell . o
- Features Caonfigure the serial line
—I- Wfindow Speed [baud) 115200
- Sppearance)
PR&T D ata bits g
- Behaviour
- Tranzlation Stop itz 1
- Selection Bari ———
- Colours Lelly \—IN one b

=I- Connection Flow control #OM=0FF -

- Data
- Prosy
- Telnet
- Rlogin
+- 55

About [Open H Lancel

Figure 47. Setting up Putty

Ashling Product Brief APB213
Page 29 of 56

6.1.3 Setting up network between host and target

Setup the IP address of the host computer (running PathFinder-XD) as shown below:

-

Internet Protocol Wersion 4 (TCP/Pw4) Properties 7 @

General

You can get IP settings assigned automatically iF your nebwork supporks
this capability, Otherwise, vou need to ask vour netwark administrator
for the appropriate IP setkings.

Cbtain an IP address automatically

@) Use the Following IP address:

IP address: 1922 168 . 1 . 1
Subnet mask: 285,255,255, 0
Default gateway: 192 . 168 . 1 . 254

Cbkain O3S server address automatically
@) Use the following DNS server addresses:

Preferred DNS server:

alkernate DNS server:

Yalidate settings upon exit | advanced. .. |

|_ Ok | | Cancel |

Figure 48. IP address configuration at Host

When the target is powered on a factory programmed Linux image (from flash memory) is loaded. Press Ctrl+C to

cancel automatic start-up which will allow us to setup the target IP address and load the kernel from our host PC
(using tftp)

COML - PuTTY (o][-5]

x1000 NAND_MEM TYFE= O

m

Figure 49. Connect 20 Boot Loader prompt

Setup the target IP address using the below boot loader command:
ifconfig eth0 -addr=192.168.1.2 -mask=255.255.255.0 -gw=192.168.1.254

Ashling Product Brief APB213
Page 30 of 56

COML - PuTTY

MEM TYPE=

Width
DEV TE
HAND

CFE initialized.

Starting splash screen.

Figure 50. Target IP address Configuration
Verify we can communicate with the host PC using ping as follows:

COMI - PuTTY

Frequency
Frequency
Mod R.:

]
3

Vendor
Vendor

CFE initialized.

Starting spla screen.
d splash i e - Width =

ifconfig e -gw=192 .
0 MB Full-Duplex
hwaddr ipaddr 192.168.1.2,

sk 2

Figure 51. Pinging to the host

Note: If ping fails, then please recheck your host computer IP settings and your firewall.

Ashling Product Brief APB213
Page 31 of 56

6.1.4 Installing TFTP Server on the host PC
Download and install TFTP server from: http://www.softpedia.com/progDownload/SolarWinds-TFTP-Server-
Download-81432.html. Run TFTPServer.exe from the installation directory (C:\Program
Files\SolarWinds\TFTPServer) and start TFTP Server via File | Configure | Start option. This will create a
TFTP root directory in C: \TFTP-Root.

B SolarWinds TFTP Server =N Eoh

Gl Tools Help solarwinds

Configure 25374504 on 1/2/2013 4:00:00 PM, binary, GET. Completed, file name:
25374504 on 1/2/2013 3:53:55 PM, binary, GET. Started, file name: C:
Clear Log... [UDP - 9],

d

Exit [UDP - 53]

1| 1 4

CATFTP-Root | Any | TFTP Server service status: Started

5 Solaririnds TFTP Server =

General | Server Bindings I Seculit_l,J|

Status

TFTF Server service status: Stopped Stap

Tray lzon

Add TFTP Server to Windows Spstem Tray

Storage

TFTP Server Root Directony:
CATFTP-Root

[T] Rename existing files on conflict

[0K] [Cancel

Figure 52. TFTP Server Configuration

Now copy the Linux ramdisk image (vmlinuz-initrd-7420c0) image from
C:\MIPS CONNECT20 LINUX v2.6.37\ tothe C:\TFTP-Root directory.

6.1.5 Loading the Linux Image using TFTP
The Linux ramdisk image (contains kernel and file system) can now be loaded to the target using the below boot
loader command:

boot -z -elf 192.168.1.1:vmlinuz-initrd-7420c0 'smp bmem=0'

Ashling Product Brief APB213
Page 32 of 56

http://www.softpedia.com/progDownload/SolarWinds-TFTP-Server-Download-81432.html
http://www.softpedia.com/progDownload/SolarWinds-TFTP-Server-Download-81432.html

ndor 0000 P

, ipaddr

WEL not

Figure 53. Loading Linux Image via TFTP

Linux will then be loaded as shown below.

COML - PuTTY = el ==

: up, 100 Mops Full Duplex

Figure 54. Linux shell on Connect 20 Target

Setup the target IP address again (the previously set IP will have been lost when Linux is reloaded) using:
ifconfig eth0 192.168.1.2

6.2 Preparing for debugging
This section is necessary only if you are building/using your own kernel; the version supplied by Ashling includes all
of the following requirements.

6.2.1 Building with debug symbols
Your kernel, modules, processes, libraries, drivers etc. must be built with debug symbols as PathFinder-XD needs to
access global structures and variables etc. to support Linux debugging.

Ashling Product Brief APB213
Page 33 of 56

Note: Debug symbols for Linux kernel (vmlinux) are required to debug user-mode applications in stop-mode (to
allow PathFinder-XD to handle memory mapping which requires kernel symbols). Kernel symbols are not required for
run-mode debugging.

e For the kernel, run make menuconfig, select Kernel hacking, enable Kernel debugging and Compile the
kernel with debug and run make to rebuild the kernel with debug symbols.

e For non-kernel items, add the compiler gcc switch -g (which will generate debug symbols) to your makefile
and rebuild.

6.2.2 On-demand paging (for stop-mode debugging only)

Linux uses “on-demand paging”, meaning a process’ (and its dependant libraries’) code, data and stack are not
actually paged into memory until they are first used. This can cause problems when you wish to “stop-mode” debug a
process from its initialisation as it may not yet be present in memory. For example, you cannot set software
breakpoints which require patching of the software breakpoint instruction into the appropriate process’ memory
location until the actual associated process code page is in memory. Depending on the size of your target’'s memory
space and your Memory Management Unit (MMU) configuration, you may or may not have this issue. If you do have
this issue, then Ashling provide a kernel patch that will force all of a process’ code, data and stack pages into
memory. This file is installed with PathFinder-XD and is called ash load process pages.c. Installing the patch
requires that you modify some existing kernel files and rebuild; please refer to the file for full details.

Note: This patch is required only for stop-mode debugging.

6.3 Stop-mode Debugging
The following features are supported:
= Linux Kernel debugging:
o Debug modules built as part of the Kernel
= Linux dynamically loadable Modules/Driver debugging:
o List all inserted modules
o Debug an already inserted module
o Debuga module from init_module ()
= Linux process (application) and library debugging:
o List all running processes and threads
Debug a running process
Debug a process from main ()
Debug shared libraries

O O O

6.3.1 Sample Stop-mode Linux Debugging Session
This section demonstrates Linux Kernel Debugging using PathFinder-XD and Opella-XD connected to a Connect 20
target running v2.6.37 Linux Kernel. Make sure that your hardware is configured as per 6.1.1

Ashling Product Brief APB213
Page 34 of 56

Connect 20 Software Development Platform Setup for Embedded Linux debugging.

1. In PathFinder-XD, create a New Target Configuration via the Target menu

72 Debug - PothFinder XD for MES

File Edit Linux | Target | Run Window Help

@f Mew Target Configuration

¥ Flash 1
%?Dehug o —

Figure 55. Target Configuration

and select the Debug using Debug Probe option as shown below

- ~
E New Connection l El eS|
Select Remote System Type
Please select the system type of the remote system to connect, :g—:
System type:
type filter text

[= Ashling Debugging
@ Debug using Debug Probe
=4 Debug using Simulator (QEMU)

Figure 56. Debug using Debug Probe

2. Click Next and we can now configure our Opella-XD settings as shown below:

Ashling Product Brief APB213
Page 35 of 56

E Target configuration l E1 S

Probe selection

Specify the debug probe

Ashling debug probe configuration
Probe type IOpeIIa-XD

Serial number use first found
USB
Configure ethernet

= Back || Nest > | [Finish] I Cancel

Figure 57. Probe selection
Settings include:
[]

Probe type: The actual Ashling Debug Probe Type to use as the target connection. Select Opella-
XD

Serial number: The serial number of the Debug Probe to use. Specify the serial number or use first
found and click on Next

E Target configuration == @

Debug probe configuration
Configure the debug probe

Device selection

MIPE device |Broadcom BMIPSS000 'l

JT&G frequency 33MHz - w Initial target byte order | Little Endian

Additional settings

User register settings file

[] Disable interrupts during single step [7]Enable DMA& made

Reset settings
@ Issue no reset on connection
() Issue EJTAGBOOT on connection

() Issue hard reset and wait 4000 ms before entering debug mode

Multi-core settings

Cores on scan chain Connectto |TAR-0 «

TAP number DbAd core IR width Bypass code
TAP -0 10000003 l0oooo1F
TAP -1 00000005 looooniF

[¥] Enable multi-care support [¥] Enable nan-stop mode

'C?," Mext = [Einish] l Cancel

Figure 58. Target Configuration

Ashling Product Brief APB213
Page 36 of 56

The Debug probe configuration settings include:

MIPS device: specifies the MIPS device type you wish to debug. In this example, Broadcom
BMIPS5000 is selected.

JTAG frequency: specifies the JTAG TCK frequency to be used for communicating with the EJTAG
interface on your MIPS device

Initial target byte order: allows you to specify the memory Endianess of your target system.

User register settings file: group allows you to initialise other registers or memory locations on
PathFinder-XD invocation and after reset. The Browse... button allows these register values to be
loaded from a simple text file. The text file format is:

Name Size Address Value

(all values are in HEX). For example, the following text file initialises the RO, R1, R2 and R3
registers:

RO 0x00000004 0xb800380c 0x18000000

R1 0x00000004 0xb8003808 0x00000006

R2 0x00000004 0xb8004018 0x00000800

R3 0x00000004 0xb800401c 0x0000000c

Disable interrupts during single step: allows you to disable interrupts when single stepping at
assembly level (MIPS instruction level). When checked, PathFinder-XD automatically disables
interrupts prior to assembly level single step and re-enables them after the single step is complete.
Enable DMA Mode: enables DMA mode for high-speed transfer between the debug probe and your
target. DMA Mode is only available on systems with EJTAG DMA support.

Single step using software breakpoint: allows you to specify that PathFinder-XD should use
software breakpoints for single-stepping (i.e. PathFinder-XD should not use the EJTAG hardware
based single-step command).

Halt counters in debug mode: allows you tell PathFinder-XD to halt the MIPS Count register(s) (via
writing to the Configuration register) whenever your program is halted. There is a slight delay
between your program halting and the write to the Configuration register. Note that the Registers
window always shows your application values for the Configuration register.

Issue no reset on connection: will ensure that no hardware reset is issued when you connect to
your target (note that this feature requires updated Opella-XD firmware (v1.1.1 or later) which is
supplied with PathFinder-XD v1.0.6 or later).

Issue EJTAGBOOT on connection: will issue a hardware reset and halt the target at the reset
location.

Issue hard reset and wait ‘N’ ms before entering debug mode: will issue a hardware reset and
wait the specified number of ms before entering debug mode. This mode is also known as
NORMALBOOT.

Multi-core: allows you to select the core you wish to debug for multi-core devices. The BCM7420
device has two cores (or hardware threads) and the first one (TAP-0) is chosen in this example.
Enable multi-core support: enables multi-core debugging. Check this as we want to debug both
cores (threads) in the BCM7420 device.

e Enable non-stop mode: allows examination of halted cores context without intruding/halting other running
cores i.e. you can halt individual cores/threads without affecting other cores/threads. By default, this mode is on.
The settings shown are suitable for Connect 20 target board. Click Finish when done.

3. PathFinder-XD will now create a new Target Debugger setting in its Remote Systems Window as shown below:

8 Remote Systems 3 =8

B 2| =

Pl 3 Ashling Opella-XD (BROADCOM-BMIPS5000):
x Target Debugger

Figure 59. Remote Systems Window

Right-click on Target Debugger and click Connect to invoke the Opella-XD target connection. Once
invoked, the Remote Systems window will update as follows:

Ashling Product Brief APB213
Page 37 of 56

8 Remote Systems i3 =8
B & &~
Pl @) Ashling Opella-XD (BROADCOM-BMIPS5000)

4 B Target Debugger
@‘ BROADCOM-BMIPS5000

Figure 60. Remote Systems Window showing target connection

4. We can now download a program to the target by right-clicking over BMIPS5000 and selecting Download and
Launch as follows:

4 Remaote Systems &2 B ¢ | | - ¥ = O8||E Console 2
4 [Ashling Opella-XD (BROADCOM-BMIPS5000) Ashling Opella-X
4 3§ Target Debugger The target i:

[BROADCOM-BMIPS5000 [New Thread :

Go To r

Refresh |

]

Rename... F2

Delete... Delete

@? Download And Launch...
Reset 2

Figure 61. Download and launch

6.3.1.1 Loading kernel symbol information to PathFinder-XD

First, enable Linux debugging via the Enable OS debugging check box (this ensures that PathFinder-XD will add
the Linux specific menu allowing you to perform Module and Process debugging). In this example, our Linux kernel
binary image and root file system are loaded via tftp to the Connect 20 board; hence, we only need to select
Symbols only (for the kernel image) into PathFinder-XD to allow symbolic kernel debug.

Ashling Product Brief APB213
Page 38 of 56

Zz Ashling Opella-XD (BROADCOM-BMIPSI000)

Modify attributes and launch

Mame: Ashling Opella-XD (BROADCOM-BRIPS5000)
[E] Main| %5 Debugger| By Source |
Dowenload

ELF {binary) path t:\MIPS_CONNECT20_LINU)(_\.-'2.6.3?\\.-'mIinux.elf Browuse...

Load Options
@ Symbals anly
() Program and symbals

() Load {program and symbols) and verify {(program)

Use fast dowenload (requires 512 bytes of RAR)

05 Auvareness

[V] Enable 05 debugaing |Linux «

Apply Rewert

(’?:l [Debug] ’ Close

Figure 62. Loading the kernel symbols

Select the Debugger tab and make sure that mips-1inux-gnu-gdb.exe is specified as the GDB debugger

Z_? Ashling Opella-XD (BROADCOR-BRMIPS5000)

Modify attributes and launch

Matne: Mshling Opella-XD (BROADCOM-EMIPSS000)
[Z] Main 3& Debugger FW Source |
[Stop on startup at: | main

Debugger Options

S
Main |

GDB debugger: C\Prograrm FileshAshlingtPathFinder-XDforbIPEWGHMUDebuggermips-linux-gnu-gdb.exe
GDE command file: qdbinit

Apply Rewert

|:'?;I [Debug] [Close

Figure 63. Specifying the correct GDB debugger

Ashling Product Brief APB213
Page 39 of 56

Select Debug and then execute the target (Run L). The kernel will boot and show status in your terminal window.

COML1 - PuTTY

SF sF SE Sk

Figure 64. Connect 20 Linux shell

Once the kernel is booted, we can halt it within PathFinder-XD by pressing —— Stop/Halt.

updates as follows:

o] [|

PathFinder-XD then

77 Debug - CAMIPS CONNECTZ0_LINUDC 26,3 \srestblinuec-2.6.3Tarchiymipsikerneligenex S - PathFinder-XD for MIPS
File Edit Linux Target Trace Run MWindow Help

| FRW a
#5 Debug 2 e i+ | @ T T O % Breakpoints 52 0 Memony ¥ Registers S Expressions

[&] Ashling Opella-XD (BROADCOM-BMIPSS000) [PathFinder-¥D Embedded Debugging]
1% vrnlinus.elf
#® Thread/Core [1] (Running)
o® Thread/Core [0] (Suspended : Signal : 0:Signal 0)
= rdk_waitd) at genex,5:147 0xB80009000
cpu_idle() at process.c:70 DxB000b0O24
nand_oob_1280) at 0x80535ad8

= O | 09= ariables 52 | = Disassernbly

|5 genexS E2
andi ¥, _ILF_MNEED_HESLHEL
bnez te, Lf
nop
nop
nop
.set mips3
uait
/* end of rollhack region (the region size must he powsr of tuc) */
.set pop

Hame Type

» ir ra
END{rdk_uait)

.macro BUILD_ROLLEACK_PROLOGUE handler
FEXPORT(rellback_%handler)

.set push

.set noat

MFC@ k@, CPB_ERC

PTR_LA k1, rak_uait

orl k@, @xlf /% 32 byte rollback region */
xori k@, @xlf

= B v £+ = 0| File Browser 2

8 Remate Systems 4 B2 = 7 = O | E console ® w B | LA
[Ashling Opella-3D {JROADCOM-DMIPSS000) Azhling Opella XD (BROADCOM BMINSE000) [MathFinder XD Embedded Debuggingl adb
B Target Debugger The target is assumed to be little endian -

@ BROADCOM-EMIPSSDON [New Thread 1]
4 [New Thread 2] > F wralinuelf

type filker text

12§

Walue

a7 Current Core :BMIP35000 Manufacturer :Broadcom

E=SE =

NEE S

Endianess :Little

Figure 65. PathFinder-XD after halting the kernel

Ashling Product Brief APB213
Page 40 of 56

Notice the following windows:

{4 File Browser 53 re e =

type filter text

4 ﬁ,‘: wimlinux.elf -
- [€] highuid.h
sdh

module.c

genhd.h

rmiih

dp_scalb.c

topoh

rrtd_blkdews.c

probe.c

P ik -

Figure 66. File Browser window showing all kernel source-files

<,>Fi|e Browser | B Linux Modules ﬁLinuxF‘rncess Pl o T 0O

i Address PID Coreld Comrmmand S50 Status *
30515700 0 I [sweapper] L[4 Current [0] | 3

| OCFC2FALE 1 1 init 01 Sleeping |

: 0=CFC2FLCE 2] [kthreadd] 00 Sleeping
0=CFC2F1IE 3] [ksoftirgd, 0] 00 Sleeping

‘ N«CFC2ERDE 5 1] [kuwarkerfuil] 00 Hleeping

I 0«CFC2E488 4 1] [rnigration/0] [1F4]] Eleeping
0=CFCZED3E 7 1 [rrigration/1] 00 Sleeping

: 0=CFC45893 2 1 [kuvarker/1:0] 00 ileeping
NxCFC43648 9 1 [ksoftirgd1] 00 Sleeping

| CFC451FS 10] [kwwork erf0:1] 00 ieeping -
a4 {1 I

Figure 67. Linux Process window showing all processes (enabled via Linux menu)

Full kernel source-level debug is now possible.

6.3.1.2 Debug a module from init_module ()
Use the Linux|Modules|Debug A Module From Initialisation menu to debug a module from its init module ()
entry point as follows:

558

Browse. ..

E Debug A Module From Initialisation

Module name CAMIPS COMMECTZ0_LIMUE 2.6, 37 srcvmoduletesthchardew ko

Debug I I Cancel I

Figure 68. Specifying the module to debug

Once specified, you now need to insert the module via the console as follows:

Ashling Product Brief APB213
Page 41 of 56

- -

T___L?Inser‘tthe fodule @

'.6.' Maowe insert the module wia Linwx consalefusing INEMOD cormrmand)

'ungpecified! taints
ng due to ke l taint

Figure 69. Inserting (running) the module

PathFinder-XD then halts the module at init module () allowing module debug as shown below:

E Debug - CAMIPS_COMMECTZ0_LINUX 2.6, 3T\ srchmoduletestichardew.c - PathFinder-HD for MIPS =)
File Edit Linux Target Trace Run Window Help

JEE F Y o =+ (%)
%5 Debug 5 b 0 @] 3@ i 0| @ 7 7 0% Breakpoints 2| B Memory Mt Registers G Expressions | e
[©] Ashling Opella-XD (BROADCOM-BMIPSS000) [PathFinder-¥D Embedded Debugging]
8 wmlinux.elf
@ Thread/Care [1] (Suspended : Breakpaint)
= init_module) at chardev.c:245 Oxe000a3fc
do_one_initcall() at main.c:747 1000153c
sys_init_moduled) at madule.c:2, 726 08007267
handle_sys() at scall32-032,5:59 IxG0012ba5c

= Dxd0dded
8 Thread/Core [0] {Running)
sl gdb
[§ genexs e chardewc 52 = B || 69= variables 52 | @ Nest [2 ==
4 4| Name Value

" int init_module()
1 N 9= ret_val -536821720
: int ret_val;

™
* Register the character device (atleast try)
M

[ret_val = register_chrdev(MBIOR_NUM, DEVICE MAME, &Fcps);
printk{™\nretval=fdin®”,ret_wal);

I
* Hegative values signify an error
=
if (ret_val < @) {
printk(KERH_ALERT s failed with %din”,
“Sorry, registering the character device *, ret_vall;
return ret_val;

i
printk(KERN_INFO "%s The major device number is %d.%n",
"Registeration is s success™, MAJOR_NLM); -
:
18 Remote Systems B & | B ¥ = B B console 2] | Ba 5B BB ¢ B ~ 9 + = O || File Browser | B LinuxModules 53| 5 Linux Process |
B Ashling Opella-XD (BROADCOM-BMIPS00T) flAshhng Opellz-¥D (BROADCOM-BMIPSSI0D) [PathFinder-XD Embedded Debugging] gdb P %
8 Target Debugger ~ I
B BROADCOM-BMIPSSI00 addre: plame Sze
BENNNAETD chardey 79
g
o* Current Core :BMIPSS000 Manufacturer :Broadcom Endisness iLittle

Figure 70. PathFinder-XD halted at init module () allowing module debug

PathFinder-XD’s File Browser view will also update to show the source files associated with the module:

Ashling Product Brief APB213
Page 42 of 56

QFiIe Browser 52 B Linux Modules ﬁLinuxProcess: =:0

type filter text

b %5 vmlinuelf
b 5 chardewko

Figure 71. File Browser window showing modules sources

And the Linux Modules window will now list the new module:

[4g File Brnwser.g Linux Modules 52 | 4 Linux Process | = "?:p =i
g

. Address MNarme Size
0xE0LDARTO chardew 2797

Figure 72. Linux Modules window listing the new module

You can also view the internal module kernel structures via the right-mouse button menu as follows:

Q File Broweser | B Linus Modules 53 ﬁ Linux Process | 1 &, = 8 '

Address MName Size
: DxE01448" — == 1

Show Module Structure |
Load Module Symbol |

Ashling Product Brief APB213
Page 43 of 56

-9@ Breakpoints D hermone it Registers @Expressiuns 23 -T:..| g %K lﬁ| 3 ‘r’"‘l '5.%'3- =]

) [

Expression Type Walue
a4 B (truct module®) 0z struct module * Oxellaadyi
()= state enum module_state MAODULE_STATE_CORMIMG
' LL—," list struct list_head ..}
: [5 natmne char [a0] lxellaald¥c =
. [rkobj struct module_kobject Lo}
- m mmodinfo_attrs struct module_attribute * Oxcff4c180
- mb sErSiON const char ™ =0
. Wy SrOVERSiON const char ™ 00
> m holders_dir struct kobject™ Nxcfhl6100
. sy const struct kernel_syrmbol ¥ 00
- W Cros const lang unsigned int ™ 00
(= num_syrms unsigned int 0
. ® kp struct kernel_param ¥ 00
(= nur_kp unsigned int 0
(= nurm_gpl_syms unsigned int 0
B gpl_syrms const struct kernel_syrnbol * 00
- gpl_crcs const long unsigned int ™ 00
- m gpl_future_syrr const struct kernel_symbol * 00
- gpl_future_crcs const long unsigned int ™ =0
G9= nurm_gpl_futur unsigned int 0

| L

-

Figure 73. Viewing the internal kernel module structures

In addition, you can load module symbols for a module that is already loaded, using the Load Module Symbol
option in the right-mouse button menu.

6.3.1.3 Debugging a process from main()

Use the Linux|Processes|Debug A Process From main () to debug a process from its entry point as follows:

-

E Debug & Process From main()

Process name COMIPS_CONMECT20_LINUX v2.6.37src\threadtest\sample_thread Browse...

18 g

rootfs Directgr}r CAMIPS COMMECT20_LINUX w2637 romfs Browse...

Shared library

Add
Shared Library Path(s)
Remove

i

Debug | | Cancel

Figure 74. Debugging a process from main ()

rootfs Directory specifies where the root file-system (root fs) resides in your host machine. This location is needed
for loading shared library symbols in PathFinder-XD. Once specified, you need to run the process from the console

as follows:
E Fur the Process

'0' Mow run the process from Linux consale

-

Ashling Product Brief APB213
Page 44 of 56

Press OK and PathFinder will run Linux allowing you to execute the process as follows:

Figure 75. Running the process

PathFinder-XD then halts the process atmain () function as shown below:

genexs) exec.c | sample_threads.c i =08

int main() -

int iRet;

pid_t pid_parent;
pthread_attr_t attr;
pthread_t t1,t2,t3;
cpu_set_t cpusetﬂ
void *res;

pid_parent = getpid();

m

printf("### Process started running with PID ¥d ###\n\n",pid_parent);

iRet = pthread_attr_init(&attr);
if(iRet !=8)

perror("###Thread Attribute Init Failure##\nReason:™);
exit(1);

iRet = pthread_create(&t1,&attr,&funcl,NULL);
if(iRet !=8)

perror{ "###Thread Creation Failure###\nReason:");
exitl1y:

a

Figure 76. PathFinder-XD halted at the process’s main () function

The File Browser window will update to show the process’ source code. Note: To exit the application, press Ctr1+C
from the Linux console.

6.3.1.4 Debugging a running process
You can load the symbols for a running process via the Linux Process window. Right-click on the process and select
Load Process Symbol:

E Load Symbcls for process sample_thread

Process symbol file t:‘aMIP 5_CONMECT20_LIMUX v2.6.37\src\threadtest\sample_thread Browse...

rootfs Directgr}r CAMIPS_CONMECT20_LIMNUX w2637 romfs Browse...

Shared library

Add
Shared Library Path(s)
Remove

¥ 0 g

Load] [Cancel

Figure 77. Loading a process’s symbols

Ashling Product Brief APB213
Page 45 of 56

It is recommended that you use hardware breakpoints when debugging a running process (i.e. do not use software
breakpoints as the process may not be paged in at this point). Once the hardware breakpoint has been taken, the
process is in memory, hence, you can use software breakpoints.

6.3.1.5 Library debugging
Debugging of libraries is handled seamlessly without any extra requirements/setup.

6.4 Run-mode Debugging
Run-mode debugging is done via a target Serial/Ethernet interface and requires an application (GDB server) running
on the target. In run-mode, the kernel continues to run when a process (application) breakpoint is taken. Run-mode
debugging requires that the kernel is up and running, and allows non-intrusive debug of process (i.e. the kernel will
continue to run even when a process is halted).

6.4.1 Sample Run-mode Linux Debugging Session
This section demonstrates Linux Process Debugging using PathFinder-XD and Opella-XD connected to a Connect
20 target running v2.6.37 Linux Kernel. The example will demonstrate debugging of a Process and a Module (that
contains functions called from the Process). Kernel/Module level debugging is done via the Opella-XD; Process
debugging is done via an Ethernet connection to the target.

As before, we have to prepare our kernel for debug, download it to the target, execute it and load the kernel symbols
into PathFinder-XD. See previous sections. Once these steps are complete, we are ready to begin debugging our
Module and Process as follows:

6.4.2 Copying the necessary files to the target
Ashling provides a precompiled version of the GNU gdbserver (v7.2 or later) to support run-mode debugging. By
default, this is included in the root file-system provided by Ashling for debugging the Connect 20 board; hence, no
copying is necessary.

When debugging your own target, note that the gdbserver application is installed with PathFinder-XD in
PathFinder-XDforMIPS\target\linux\gdbserver and versions are supplied for big/little endian and
libc/uclibc target libraries.

6.4.3 Debugging the Module and Process

1. First, load the Module (using insmod) from our Linux shell as follows:

inswod chardev.ko

chardev: module license 'unspecified' taints kKernel.
debugging due to kernel taint

Figure 78. Loading the Module to be debugged

Note: Do not attempt to load a module twice, as debugging will not work correctly (use rmmod chardev.ko
if you need to remove or unload the module)

2. Now, halt the kernel in PathFinder-XD and load the Module symbols from within the PathFinder-XD Linux
Modules window:

<,> File Browser | BB Linus Modules &3 u Linee Process =0

‘-vRN w\r"
| Address Matre Size |
| DxE000A870 St =

Show Module Structure

I Load Module Sermbol

Ashling Product Brief APB213
Page 46 of 56

e Load Symbals OF & Module e

hodule name fwithout ka) | chardew

Module syrmbal file k::\MIPS_CONNECTED_LINLI)(_VE.IS.37‘\5rc\muduletest\chardev.ku Browse,,,

ok || cance |

Figure 79. Loading the Module symbols

3. Notice how the File Browser now shows the Module and Kernel symbols:

<,>Fi|e Browser £2 | B Linux Modules %;.C?‘ =

type filter text

s ﬁ:vmlinux.elf
, ﬁs: chardewko

Figure 80. File Browser showing Kernel and Module symbols

We can double-click on the Module to list the files and double-click on a source-file to show it in the Source
Window. In the below example, we have opened the Module source-file chardev.c and set a breakpoint at
the function device read that we wish to debug (i.e. when this function is called from the Process).

[5] genex.5 | chardev.c 3 G]
* device file attempts to read from it. L
il
static ssize_t deviee read(struct file *file, f* zee include/.
char _ user * hbuffer, /* buffer to be
* filled with data */
gize t length, /% length of the bhuffer *f
loff © * offset)
wa
i
* MNumber of bytes actually written to the bhuffer
i
int hytes _read = 0; v
4 >

Figure 81. Setting a Breakpoint in the Module

4. Next, run the kernel in PathFinder-XD

Ashling Product Brief APB213
Page 47 of 56

Z; Debug - CAMIPS_COMMECT20_LINWX 26,3 Tsremoduletesthchardew.c - PathFinder-XD for MIPS
File Edit Linux Target Trace Run ‘ifindow Help
B O
ﬁDehug i 0l m .
4 [T] Ashling Opella-XD (BROADCOM-BMIPSS000) [PathFinder-¥D Embedded Debugging)
4 18 urmlinuelf
2 Thread/Core [1] (Running)

2 Thread/Core [0] (Running)
g qcb

EERE:

Figure 82. Running the Kernel

and launch gdbserver on the target (i.e. in the Linux shell) specifying the Process we wish to debug
(ashtestapp). Notice how we tell . /gdbserver which port to listen on (1234)

11234 , /ashte:

./ ashtestapp cre:

Listening on port 1234

Figure 83. Launching the Process

Ashling Product Brief APB213
Page 48 of 56

5. Next, Debug A Process in Run-mode using PathFinder-XD (the kernel is now running) as follows:

E Debug - CAMIPS COMMECT20_LINUY v2.6.37\src\moduletest\chardew.c - PathFinder-XD for MIPS

File EditTarget Trace FRun ‘Window Help

| Modules 3 . E@/ 7
35 Debug Processes » List Running Processes | i | [
4 [t] Ashling Opella-XD (BROADC Debug & Process Fram main(} bugging]
4 0 wrnlinu.elf Debug & Process in Run-mode

8 Thread/Core [1] (Running]
& Thread/Core [0] {Running)

wl gdb

Figure 84. Debugging a Process in Run-mode

We need to specify
a. the Process:

5] Run-rande Debugging Options 'EEW Source

Process CAMIPS CONMECT20_LINUX w2.6.37src\ashtestapphashtestapp B[nwse

Figure 84. Specifying the Process

b. the location of the shared libraries:

Debugger Options
rmam | Shared Libraries ?.Iau:unneci:-inr{;
Directories:

CHMIPS_COMNMECT20_LINUX w2.6.3Thramfs

Figure 85. Specifying the Share Library location

c. and finally, the connection mechanism (TCP in our example) and IP address of the target system (i.e. the
Connect 20 at 192.168.1.1 which is running gdbserver on port 1234):

Debugger Optians

[ain | .SharedLibrariesi Connection |

Type: |TCP =

Huost name or [P address: 19216811

Patt humber: 1234

Figure 86. Specifying the Connection mechanism

Ashling Product Brief APB213
Page 49 of 56

Make sure that mips-1linux-gnu-gdb.exe is specified as the GDB debugger (default) and press Debug to start
debugging the Process.

Z_;’ Ashling TCP_Serial connection (BROADCOM-BMIPSS000)

Specify Attributes For Debugging A Process In Run-mode

Mame: Ashling TCP_Serial connection (BROADCORM-BRMIPS5000)
=] Run-muode Debugging Options EW Source |
Process COMIPS COMMECT20_LIMUX w2.6.3Tsrchashtestapphashtestapp Browse...
[V] Stop on startup 3t main

Debugger Options

tain | Shared Libraries \'\'u(fonnect.ion.f
GDE debuggen: ChPragrarm Files\AshlingiPathFinder-XDfarbAIPSAGMUDebuggermips-linux-gnu-gdb.exe Browse,

GDE command file: .gdhbinit Browrse...

Marning: Some commands in this file may interfere with the startup operation of the debugger, for example "run")

[T Mon-stop mode (Mote: Requires non-stop GDB)
[C] Force thread list update on suspend

;_”‘;Automatically debug forked processes (Mote: Requires Multi Process GDE)

I Apply I I Rewert |

I Debug | [Close]

Figure 87. Debugging a Process in Run-mode dialog

6. PathFinder-XD will now update as follows:

7 Debug - CAMIPS_ CONNECT20_LINLX 2.6, 3T\ srckashtestapplashtestapp.c - PathFinder-XD for MIPS = &)
Fle Edit Linox Torget Trace Run Window Help
= & [0eeua)
Debug #4 U .| 33 i L0 B “@ Breakpoints 5 Mermory aisi Registers | G Expressions 7 LY A 7
45 Debug i fa ~ — Offe 2 0 MR Reisrers | SiED @ o

[E] &shling Opella-XD (BROADCOM-BMIPS3000) [PathFinder-XD Embedded Debugaingl
5@ wmlinuelf
@ Thread/Core [1] (Running)
#& Thread/Core [0] (Running)
pl gdb
[£] Ashling TCP_Serial connection (BROADCOM-BMIPSSO00) [PathFinder-XD Run-made Debugging]
5@ fashtestapp [456] [cores: 0]
i Thread [1] 456 [core: 0] (Suspended : Breakpoint)
= maing st ashtestapp.c:127 (xdi0edd

s gelb
P)
[8 genens T ashtestappoc 52 = O || 09= Variables 2% |2 Disassembly o | & ==
2 - Hame Type Value
* Main - Call the foctl functions .
oy (9= file_desc int 2002430480
int main() 9= choice int 2001985312
i
int file desc, choice;
/{Try opening and closing before displaying menu
file_desc = open(DEVICE_FILE_HANE,C_RDUR);
if (file desc < @) {
printf("Can't open device file: ¥s\n", DEVICE_FILE_NAME);
return -1;
close(file_desc);
do
{
printt(“Henuin====\n"); [E
printf("1. Read from dewice\n2. Write to devicein"); 1
printf(*3. Exitin®);
printf(*Enter your choice : *);
scanf("%d" Bchoice) ;
switch{choice) - -
; b '
8 Remote Systems 2 B & |2~ =8| B consale] | B BB B ¢ B v % v = 3|/ File Browser &3 S EE=3
[Ashling Opella-}D (BROADCOM-BMIPSS000) Ashling TCP_Serial connection (BROADCOM-BMIPSS000) [Path

inder-¥D Run-rmode Debugc
B Target Debugger 7 type filter text:

[BrROADCOM-BMIPSS00D + B wmlinuxelf

4 T ashtestapp
L] wcharh
[2) pthreadtypesh
. [2 stddefh
<] typesh
- (g uClibe_stdio.h
[€) stdio.h
. [ashtestapp.c

Current Core :BMIPS5000 Manufacturer :Broadcom Endianess Little

Figure 88. PathFinder-XD in Run-mode

Ashling Product Brief APB213
Page 50 of 56

Notice how:

e The Debug window shows both the Kernel (Embedded Debugging) and Process (Run-mode Debugging)
status:

%5 Debug &2 Ok [= | i L i i= ! e ¥ =0
[t] Ashling Opella-XD (BROADCOM-BMIPSS000) [PathFinder-XD Embedded Debugging]
12 urmlinux.elf
@ Thread/Care [1] {Running)
@ Thread/Core [0] {Running)
g gdb
[t] Ashling TCP_Serial connection (BROADCOM-BMIPSSI00) [PathFinder-¥D Run-maode Debugging]
1@ fashtestapp [456] [cores: (]
o Thread [1] 456 [core: 0] (Suspended : Breakpoint)
= main) at ashtestapp.c:127 (xd00ed4

Figure 89. PathFinder-XD Debug Window showing Kernel and Process (Kernel Run-mode) status

e The File Browser shows the Module, Process and Kernel sources:

£ File Browser 52| B Linux Madules v [{E T8

type filker text

s ﬁ- wrnlinu.elf

4 3§ ashtestapp
s wicharh

pthreadbypes.h
stddef.h
types.h
uClibc_stdio.h
stdiouh
ashtestapp.c
s %‘} chardew.ko

RERRRERE

Figure 90. PathFinder-XD File Browser showing Module, Process and Kernel sources

e The Source window shows the source code for our Process from main ()

Ashling Product Brief APB213
Page 51 of 56

15| genexs Tt ashtestapp.c o2 =0
i -
* Main - Call the ioctl functions
*f

int maini)

int file_desc, choice;
HTry opening and closing before displaying menu
3 file desc = open(DEVYICE_FILE_MAME,O RDUWR);
if (file_desc < @) 4
printf{"Can't open device file: %s\n™, DEWICE_FILE_NAME);
return -1;

close(file_desc);
do
il
printf({"Menuin====\n"};
printf("1l. Read from deviceinZ. Write to device\n™);
printf{"3. Exit'n™);
printf("Enter your cholce @ ™7;
scanf("%d" ,Achoice);
switchichoice) -

m

Figure 91. Process Source

We can now debug our Process as normal with the Kernel running in the background.

When our Process calls functions located in the Module which have a breakpoint set, then the Module/Kernel will halt
and PathFinder-XD’s Debug window will update as follows:

35 Debug 2 N N EN= A A
a [c] Ashling Opella-¥D (BROADCOM-BRWMIPS5000) [PathFinder-XD Embedded Debugging]
4 78 wrnlinueelf
@ Thread/Core [1] (Running)
4 gf# Thread/Core [0] (Suspended : Breakpaint)
dewvice_read(at chardew.c:87 Oxel00alb8
wis_read() at read_werite,c: 326 0xB00c0ec
sys_read() at read_write.ci416 0:300c91e0
handle_sys() at scall22-032.5:59 (:B0012b5c
(400d40

g gdb
a [t] Ashling TCP_Serial connection (BROADCOM-BMIPSS000) [PathFinder-XD Run-rnode Debugging]
4 Sazhtestapp [461] [cores: 0]
u® Thread [1] 461 [care: 0] (Running : User Request)
o gdb

Figure 92. PathFinder-XD Debug Window showing the Kernel halted

Notice how the Kernel is now shown as halted (i.e. PathFinder-XD has automatically switched from run-mode to stop-
mode as the kernel is halted due to the breakpoint in the Module). This demonstrates how PathFinder-XD easily
switches between stop-mode and run-mode within the same debug session.

6.5 Application specific hardware breakpoint

This section demonstrates how to setup application specific hardware breakpoints in PathFinder-XD for MIPS. For
example, this feature allows you to set a breakpoint in a module that is only taken when that module is called by a
specific application. Each application has a unique ASID (Application Specific ID) which is used to qualify
breakpoints.

Our example will use the chardev module and the ashtestapp application. The write device function of
module can be accessed via ashtestapp or using the echo command. In this example, we will put an application
specific BP in write device and illustrate that this breakpoint is not taken when this function is accessed via echo
command.

1. First, load the Module (using insmod) via Linux shell as follows:

insmwod chardev. ko

chardev: module license 'unspecified' taintzs kernel.
Dizebling lock debugging due to kernel taint

Figure 93. Loading the Module to be debugged

Ashling Product Brief APB213
Page 52 of 56

Note: Do not attempt to load a module twice, as debugging will not work correctly (use rmmod chardev.ko
if you need to remove or unload the module)

2. Halt the kernel in PathFinder-XD and load the Module symbols via PathFinder-XD Linux Modules view:

<z’ File Browser | B Linux Modules &3 |_; Linux Process =vd
wn T

Address Marme Tize

| DxE000A3T0 e a7aT

Show Module Structure
Load Module Syrmbol

e Load Symbals OF & Module e

hodule name fwithout ka) | chardew

Module syrmbal file k::\MIPS_CONNECTED_LINLI)(_VE.IS.37‘\5rc\muduletest\chardev.ku | Browse,,, |

0] 4] | Cancel |

Figure 94. Loading the Module symbols

3. Resume the target and start the test application (ashtestapp) that uses module

Figure 95. Executing application

4. Halt the kernel in PathFinder-XD, and note down the ASID of ashtestapp using process list

Ashling Product Brief APB213
Page 53 of 56

</Fi|e Browser | B Linux Modules ﬁ Linux Process &3 l:é":‘ (%9 =0

Address PID Coreld Command ASID Status i
0xCFD236C8 392 1 [mtdbleckl] 00 Sleeping
0xCFD17A88 397 1 [mtdbleckz] 00 Sleeping
OxCFCES1FE 418 0 mocad IS Sleeping
OxCFCES958 432 0 udhcpc 0 Sleeping
0xCFCODZTE 440 1 portmap 089 Sleeping
0xCFCOC138 441 1 telnetd (xBa Sleeping
OxCFCDO&.. 442 0 sh 0f7 Sleeping
OxCFCOCE2E 444 0 [koworker/0:2] 0 Sleeping
OxCFCCFITE 449 1 udhcpe Oxa3 Sleeping =
OxCFCDO03E 473 0 ashtestapp Oxfb Sleeping 3

Figure 96. Note ASID of the process

5. Set a hardware Instruction breakpoint in device write function with the process ASID specified

© |
E Breakpoint Configuration &J
Breakpoint Details
Breakpoint Type Hardware Instruction Breakpoint v]
Ignore Count]

Instruction/Data Access Address

Start Address device_write

Advanced
Address Match |
[] Address Mask 000000000
Match ASID 0000000fk

| oK | [Cancel

Figure 97. Set hardware breakpoint

Ashling Product Brief APB213
Page 54 of 56

6. Resume the target and choose option 2 from application and notice that the breakpoint is taken

ﬁDebug = L= [A iv (’_%‘.\ ¥ = O || ® Breakpoints &2 | [Memory 4 Registers| 1 Ex

[©] Ashling Opella-XD (BROADCOM-BMIPS5000]) [PathFinder-XD Embedded Debugging] v ,,E [address: Oxe000a0a8] [type: Hardware]
o vmlinweelf
1 Thread/Core [1] (Suspended : Breakpoint]
device_write() at chardev.c:134 0xeD00a0a8
wfs_write() at read_write.c:382 0xB00c8f84
sys_write() at read_write.c:434 08009284
handle_sys() at scall32-032.5:59 0x80012b5¢

0x400e40
& Thread/Core [0] (Running) i _
W3 gdb Mo details to display for the current selection.
't/ chardev.c 2 = O ||td= Variables 52 |2 Disassem

|5 genex.S

his function 1s called when somebody tries to - M
. . A ame
te into our device file.

/ » file
static ssize_t » buffer
device_write(struct file *file, (9: length

const char _ user * buffer, size t length, loff t * offset) offset

b
¢ int i3 B
#ifdef DEBUG

printk{KERN_INFO "device write(¥p,%s,%d)", file, buffer, length);

m

Figure 98. Breakpoint is taken by device_write

7. Now, resume the target and put the application to the background by pressing Ctrl+z

8. Try writing to the device using the echo command and notice that the breakpoint is not taken.

£P COM1 - PuTTY E=EEEE)

Figure 99. Executing application

9. Restore the application to the foreground using the £g command

10. Choose option 2 from application and note that the breakpoint is again taken.

Ashling Product Brief APB213
Page 55 of 56

6.6 Known Issues in SMP Linux Debugging

1. SMP Linux kernel stepping will not work when common code (e.g. a module or a driver) is simultaneously
accessed by both threads/cores. This will result in an “Error 45: Command not allowed...” message which will
be displayed in the GDB console view in PathFinder-XD. If this is an issue then select all-stop mode in the
Target Configuration dialog (i.e. uncheck Enable non-stop mode) as shown below:

E Target configuration [(=] —EhJ

Debug probe configuration

Configure the debug probe

Device selection

MIPS device |Breadcom BMIPS5000 v|

JTAG frequency 35MHz = Initial target byte order |Little Endian =
Additional settings

User register settings file Browse...

Disable interrupts during single step Enable DMA mode

Single step using software breakpoint Halt counter in debug mode

Reset settings
@ [=zue no reset on connection

Issue EJTAGBOOT on connection

Issue hard reset and wait 4000 ms before entering debug mode

Multi-core settings

Cores on scan chain |2 | Connectto |[TAP-0 =

TAP number DMA core IR width Bypass code
TAP -0 00000005 0000001F
TAP-1 00000005 0000001F

Enable non-stop mode

/| Enable multi-core support

'@:‘ < Back MNest = [Finish] | Cancel

Figure 100. All-stop mode configuration

2. If a GDB crash occurs during SMP debugging then just re-launch the application being debugged using
Download and Launch option; there is no need to exit and restart PathFinder-XD.

3. When multi-core debugging, the Debug view may sometimes not be updated automatically after stepping.

L
Use the refresh = button in the Debug view to force a manual update.

7. Conclusion

This APB shows the debugging capabilities of PathFinder-XD when used in-conjunction with the advanced features
of the Broadcom BMIPS5000 on-chip debug interface. Powerful features such as multi-core debug, real-time trace
capture and Embedded Linux debugging are easily configured and used from within PathFinder-XD’s user-interface.
These features allow real-time, non-intrusive debug and analysis of your Broadcom based embedded application
thus helping you to achieve on-time delivery to market. We hope you like it! Please send your feedback to
hugh.okeeffe@nestgroup.net

Doc: APB213-PF-XD_MIPS_BRCM.DOC, Hugh O’Keeffe, Ashling Microsystems

Ashling Product Brief APB213
Page 56 of 56

	1. Introduction
	2. Installation
	2.1 PathFinder-XD Windows™ Installation
	2.2 PathFinder-XD Linux Installation
	2.3 Opella-XD USB Driver Installation
	2.3.1 Windows™ USB Driver Installation
	2.3.2 Linux x86 USB Driver Installation
	2.3.2.1 Ubuntu/Debian libusb installation
	2.3.2.2 Fedora/other distribution libusb installations
	2.3.2.3 Setting permissions

	3. Debugging with PathFinder-XD
	3.1 Connecting Opella-XD to the Target
	3.1.1 Verifying Opella-XD is properly connected to your host PC

	3.2 Using PathFinder-XD
	3.2.1 Getting started/configuring PathFinder-XD
	3.2.2 Downloading your program to the target
	3.2.3 Controlling program execution/using breakpoints
	3.2.4 File Browser
	3.2.5 Watching program variables
	3.2.6 Viewing memory
	3.2.7 Viewing registers
	3.2.8 Using the console
	3.2.9 Viewing the Translation Lookaside Buffer (TLB)
	3.2.10 Viewing cache

	4. Multi-core support
	4.1.1 Multi-core configuration
	4.1.2 Debugging multiple cores simultaneously
	4.1.3 Examining individual core context
	4.1.4 Pin and clone support

	5. Trace support
	5.1 Enable/configure trace
	5.2 Viewing trace
	5.3 Saving trace
	5.4 Known issues with trace

	6. Embedded Linux debugging support
	6.1 Hardware Setup
	6.1.1 Connect 20 Software Development Platform Setup for Embedded Linux debugging
	6.1.2 Setting up Putty
	6.1.3 Setting up network between host and target
	Note: If ping fails, then please recheck your host computer IP settings and your firewall.
	6.1.4 Installing TFTP Server on the host PC
	6.1.5 Loading the Linux Image using TFTP

	6.2 Preparing for debugging
	6.2.1 Building with debug symbols
	6.2.2 On-demand paging (for stop-mode debugging only)

	6.3 Stop-mode Debugging
	6.3.1 Sample Stop-mode Linux Debugging Session
	6.3.1.1 Loading kernel symbol information to PathFinder-XD
	6.3.1.2 Debug a module from init_module()
	6.3.1.3 Debugging a process from main()
	6.3.1.4 Debugging a running process
	6.3.1.5 Library debugging

	6.4 Run-mode Debugging
	6.4.1 Sample Run-mode Linux Debugging Session
	6.4.2 Copying the necessary files to the target
	6.4.3 Debugging the Module and Process

	6.5 Application specific hardware breakpoint
	6.6 Known Issues in SMP Linux Debugging

	7. Conclusion

