

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

1

White Paper on adding Custom RISC-V
Instructions to QEMU

Hugh O’Keeffe, VP Global Engineering, Ashling

v0.3, 22nd Feb 2021

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

2

Table of Contents

Introduction .. 3

Requirements and Overview .. 4

Requirements .. 4

Overview ... 4

The RISC-V RV32I Custom Instruction ... 4

Adding a Custom RISC-V Instruction to QEMU ... 5

Installing MSYS2 including the required QEMU packages/sources and building the QEMU

executable ... 5

Modifying the QEMU source-code to support the new custom instruction 8

Translating New Target Instructions ... 8

Debugging the Custom RISC-V Instruction using RiscFree™ ... 10

Building a RISC-V application which uses the new custom instruction (using RiscFree™) 10

Debugging the new instruction within RiscFree™ .. 11

Conclusion ... 12

More Information ... 12

List of Figures

Figure 1. RiscFree™ IDE and Debugger running QEMU .. 3

Figure 2. Downloading latest MSYS repository updates ... 5

Figure 3. Configuring for QEMU Build ... 6

Figure 4. Building QEMU for RISCV32 ... 6

Figure 5. QEMU for RISCV32 Build complete .. 7

Figure 6. R-Type Encoding from Green Card... 8

Figure 7. R-Type Encoding from Green Card... 10

Figure 8. Debugging the new Custom Instruction .. 11

Figure 9. After executing the new Custom Instruction ... 11

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

3

Introduction

QEMU (www.qemu.org) is a “Quick EMUlator” which provides software-based emulation of core

architectures including RISC-V, Arm and many others. QEMU includes a built-in debugger interface

allowing end-users to begin software development for their target architecture before hardware

availability – the process generally referred to as simulating or using an Instruction Set Simulator (ISS).

QEMU supports all target core Instruction Set Architectures (ISAs) – for example, for RISC-V, the RV32I

and RV64I ISAs are supported amongst others. QEMU support can also be extended to support any

custom instructions, enhancements or additions end-users may make to the ISA for the purposes of

optimising their chip design. Of course, having QEMU support for custom instructions provides a

powerful mechanism for evaluating the effectiveness of these instructions before committing them

to silicon via RTL changes.

This paper provides an overview of how a unique custom instruction can be added to the RISC-V

version of QEMU and how to use and debug applications using that instruction in Ashling’s RiscFree™

RISC-V IDE and Debugger.

Figure 1. RiscFree™ IDE and Debugger running QEMU

http://www.qemu.org/
https://www.ashling.com/ashling-riscfree/

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

4

Requirements and Overview

Requirements
Adding a Custom RISC-V instruction requires modifying the QEMU source-code and rebuilding the

QEMU executable. This requires you have some software engineering expertise and familiarity with:

1. The RISC-V instruction-set and programming architectures.

2. The ‘C’ programming language and development tools.

Overview
A step-by-step guide is provided to show how to add a single RISC-V custom instruction to QEMU (for

the RV32I ISA) on a 64-bit Windows™ host with the MSYS2 (https://www.msys2.org/) build

environment. Steps include:

1. Installing MSYS2 including the required QEMU packages.

2. Installing the QEMU source-code (we will use v5.0.0).

3. Building QEMU before we make any changes (to ensure steps 1 and 2 above completed ok).

4. Modifying and extending the QEMU source-code to support the new custom instruction.

5. Rebuilding the QEMU executable with support for the new custom instruction.

6. Building and debugging a RISC-V application which uses the new custom instruction using

Ashling’s RiscFree™ (we will use v1.2.8).

The RISC-V RV32I Custom Instruction
Our custom instruction will be an R-type/R-format RISC-V RV32I instruction which supports two

register inputs and one register output. The instruction is a bit counter as follows:

 BITCNT dest-t0, src1-t1, src2-t2

After execution, register t0 will equal the total number of bits set in t1 and t2.

For example, assume:

A2 = 0x0000-3000 and A3 = 0xF000-000F

After execution of:

 BITCNT A1, A2, A3

A1 will be equal to 0x0000-000A (i.e. A2 has 2 bits set and A3 has 8 bits set giving a total of 10

(0x0A) bits set).

For more details on the RISC-V ISA and R-type instructions, see https://riscv.org/wp-

content/uploads/2017/05/riscv-spec-v2.2.pdf.

https://www.msys2.org/
https://www.ashling.com/ashling-riscfree/
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

5

Adding a Custom RISC-V Instruction to

QEMU

Installing MSYS2 including the required QEMU packages/sources and building the QEMU executable

1. Follow ALL the instructions in the following link to install the MSYS build environment up to

and including the Download the QEMU source code step:

https://wiki.qemu.org/Hosts/W32#Native_builds_with_MSYS2

Figure 2. Downloading latest MSYS repository updates

2. Install the ninja build package:
$ pacman -Syu ninja

3. Install (checkout) the v5.0.0 QEMU source code:
$ cd QEMU

$ git checkout v5.0.0

https://wiki.qemu.org/Hosts/W32#Native_builds_with_MSYS2

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

6

4. Configure for building as follows:
$./configure --cross-prefix=x86_64-w64-mingw32- --enable-gtk --

enable-sdl --target-list=riscv32-softmmu

Figure 3. Configuring for QEMU Build

5. Build as follows:
$make riscv32-softmmu all

Figure 4. Building QEMU for RISCV32

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

7

Figure 5. QEMU for RISCV32 Build complete

6. After the build, the QEMU simulator executable will reside in:
qemu/riscv32-softmmu/qemu-system-riscv32.exe

7. The simulator executable needs to be copied to replace the existing simulator executable in

the RiscFree™ v128 installation.

copy “C:\msys64\home\<USER>\qemu\riscv32-softmmu\qemu-system-

riscv32.exe"

“C:\Users\<USER>\AppData\Local\Ashling\RiscFree_IDEv128\qemu\q

emu-system-riscv32.exe”

You may make a backup of the original RiscFree™ version first as follows:

copy

“C:\Users\<USER>\AppData\Local\Ashling\RiscFree_IDEv128\qemu\q

emu-system-riscv32.exe”

“C:\Users\<USER>\AppData\Local\Ashling\RiscFree_IDEv128\qemu\q

emu-system-riscv32.exe.bak”

8. Finally, copy the latest MSYS2 DLLs to the RiscFree™ v128 installation directory (replacing the

existing ones)
copy “C:\msys64\mingw64\bin*.dll” “C:\Users\<USER>\AppData\Lo

cal\Ashling\RiscFree_IDEv128\qemu*.*”

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

8

Modifying the QEMU source-code to support the new custom instruction

In this section, we will outline the steps to add the custom instruction to the RV32I ISA in QEMU. As

previously mentioned, our custom instruction will be an R-type/R-format RISC-V instruction which

supports two register inputs and one register output as follows:

 BITCNT dest-t0, src1-t1, src2-t2

The https://www.cl.cam.ac.uk/teaching/1516/ECAD+Arch/files/docs/RISCVGreenCardv8-

20151013.pdf green-card provides a good overview of the encoding of the RISC-V instructions and an

arbitrary insertion point was selected for the new BITCNT instruction which does not overlap with

any existing RV32I instructions.

Figure 6. R-Type Encoding from Green Card

BITCNT has the following fields:

OPCODE = "0110011", FUNCT3 = "111" and FUNCT7 = "0100000".

When adding a new custom instruction it is best to try to find an existing instruction structured

similarly to the new instruction. In our case, the AND instruction is a good fit which has fields as

follows:

OPCODE = "0110011", FUNCT3 = "111" and FUNCT7 = "0000000".

Translating New Target Instructions

New target instructions must be translated into QEMU operations which in turn are transferred into
host operations by the provided ports. This process is known as the “decodetree flow” and is
documented here: https://qemu.readthedocs.io/en/latest/devel/decodetree.html. Given that the
existing AND instruction and the new BITCNT were similar, reviewing the code to understand how
AND was implemented greatly helped in understanding the changes needed for the new BITCNT
implementation.

Implementing support for a new target instruction requires the following steps:

1. Fill out an encoding specification for the custom instruction BITCNT as follows:

file:target/riscv/insn32.decode

BITCNT 0100000 111 0110011 @r

See the previous decidetree link above (Formats description)) for more information.

https://www.cl.cam.ac.uk/teaching/1516/ECAD+Arch/files/docs/RISCVGreenCardv8-20151013.pdf
https://www.cl.cam.ac.uk/teaching/1516/ECAD+Arch/files/docs/RISCVGreenCardv8-20151013.pdf
https://qemu.readthedocs.io/en/latest/devel/decodetree.html

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

9

2. Provide a translator function for the new custom instruction which implements (emulates)

the required BITCNT functionality in the QEMU instruction set (also known as a Tiny Code

Generator or tcg).

See here: https://wiki.qemu.org/Documentation/TCG and here:

https://wiki.qemu.org/Documentation/TCG/frontend-ops for more details.

The new BITCNT translator ‘C’ function is in:

file:target/riscv/insn_trans/trans_rvi.inc.c

static bool trans_bitcnt(DisasContext *ctx, arg_bitcnt *a)

{

 TCGLabel *loop_source1 = gen_new_label();

 TCGLabel *loop_source2 = gen_new_label();

 TCGv source1, source2, dstval, cntval;

 source1 = tcg_temp_local_new();

 source2 = tcg_temp_local_new();

 dstval = tcg_temp_local_new();

 cntval = tcg_temp_local_new();

 // Count all the bits set in rs1 and rs2 and put that number in rd

 gen_get_gpr(source1, a->rs1);

 gen_get_gpr(source2, a->rs2);

 tcg_gen_movi_tl(cntval, 0x0);

 /* Count the bits that are set in the first register */

 gen_set_label(loop_source1);

 tcg_gen_andi_tl(dstval, source1, 0x1);

 tcg_gen_shri_tl(source1, source1, 0x1);

 tcg_gen_add_tl(cntval, cntval, dstval);

 tcg_gen_brcondi_tl(TCG_COND_NE, source1, 0x0, loop_source1);

 /* Count the bits that are set in the second register */

 gen_set_label(loop_source2);

 tcg_gen_andi_tl(dstval, source2, 0x1);

 tcg_gen_shri_tl(source2, source2, 0x1);

 tcg_gen_add_tl(cntval, cntval, dstval);

 tcg_gen_brcondi_tl(TCG_COND_NE, source2, 0x0, loop_source2);

 /* Update the destination register with the bits total */

 gen_set_gpr(a->rd, cntval);

 tcg_temp_free(source1);

 tcg_temp_free(source2);

 tcg_temp_free(dstval);

 tcg_temp_free(cntval);

 return true;

}

With the above changes made in the two files, re-build and copy the simulator into the RiscFree™

directory as explained earlier. Operation of the new custom instruction can now be observed as

outlined in the following section.

https://wiki.qemu.org/Documentation/TCG
https://wiki.qemu.org/Documentation/TCG/frontend-ops

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

10

Debugging the Custom RISC-V Instruction

using RiscFree™

Building a RISC-V application which uses the new custom instruction (using RiscFree™)

Adding code-generation or intrinsic support to the GCC compiler for the new BITCNT custom

instruction is outside the scope of this paper and instead, we will modify an example program to use

the new BITCNT instruction via the in-line assembler asm instruction as follows.

1. Modify the existing RiscFree™ example program gcc_qemu32_example to use the in-line
assembler as follows:

int main()
{
 char szSlaveMessage[MAX_BUF_LEN] = {'\0'};

 /* Initialize SPI Configuration Register */
 SPI_CR.uiRegValue = 0;
 /* Configure SPI module */
 ConfigSPI();
 /* initialise registers */
 asm ("li a0,0x00000000");

asm ("li a1,0x00000010");
asm ("li a2,0x00003000");
asm ("li a3,0xF000000F");
asm ("nop");

asm(".word 0x40D675B3"); // bitcnt a1, a2, a3
asm ("nop");
asm(".word 0x40D67533"); // bitcnt a0, a2, a3
asm(".word 0x40A57533"); // bitcnt a0, a0, a0

 while (1)

[snip]

BITCNT has the following fields:

OPCODE = "0110011", FUNCT3 = "111" and FUNCT7 = "0100000".

and the .word values above can be determined by adding in the register values rs2, rs1 and rd as

shown below:

Figure 7. R-Type Encoding from Green Card

The example program will now first initialise the a0,a1,a2 and a3 registers and then execute the
new BITCNT instruction. Select Build Project (via the RiscFree™ Project menu) and Debug
Configurations… (via the Run menu) and debug using the RISC-V QEMU Debugging launch.

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

11

Debugging the new instruction within RiscFree™

1. Set a breakpoint at the NOP instruction and run to it. Notice how the registers: a0, a1, a2

and a3 have been initialised as expected

Figure 8. Debugging the new Custom Instruction

2. Now run/step over the BITCNT instruction and notice how the a1 register is updated as expected

(i.e. it shows a total of 10 (0x0A) bits set in a2 and a3).

Figure 9. After executing the new Custom Instruction

Adding Custom RISC-V Instructions to QEMU

www.ashling.com

12

Conclusion

This paper provided an overview of how a unique custom instruction for the RV32I ISA can be added

to the RISC-V version of QEMU and how to use and debug applications using that instruction in

Ashling’s RiscFree™ RISC-V IDE and Debugger.

The RISC-V ISA is designed to be extendable to support custom instruction enhancements or additions

allowing end-users to implement specific optimisations for their RISC-V based design. Having QEMU

support for custom instructions provides a powerful mechanism for evaluating the effectiveness of

these instructions before committing them to silicon via RTL changes.

More Information

If you have any questions or comments, then please contact me at hugh.okeeffe@ashling.com. For

more details on how Ashling can help with your customised toolchain requirements then contact me

and/or see the SERVICES section of our website at www.ashling.com. For example:

https://www.ashling.com/services-compilers/ covers custom compilers, IDEs, simulators and

debuggers.

https://www.ashling.com/services-taas/ explains our Tools-as-a-Service™ (TaaS™)

engagement model.

https://www.ashling.com/ashling-riscfree/
mailto:hugh.okeeffe@ashling.com
http://www.ashling.com/
https://www.ashling.com/services-compilers/
https://www.ashling.com/services-taas/

	Introduction
	Requirements and Overview
	Requirements
	Overview
	The RISC-V RV32I Custom Instruction

	Adding a Custom RISC-V Instruction to QEMU
	Installing MSYS2 including the required QEMU packages/sources and building the QEMU executable
	Modifying the QEMU source-code to support the new custom instruction
	Translating New Target Instructions

	Debugging the Custom RISC-V Instruction using RiscFree™
	Building a RISC-V application which uses the new custom instruction (using RiscFree™)
	Debugging the new instruction within RiscFree™

	Conclusion
	More Information

